--- base_model: openai/whisper-large-v3 datasets: - google/fleurs library_name: transformers license: apache-2.0 metrics: - wer model-index: - name: whisper-large-v3-English-Version2 results: [] language: - en pipeline_tag: automatic-speech-recognition --- # whisper-large-v3-English-Version2 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1802 - Wer: 5.4448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.1778 | 5.3333 | 2000 | 0.1887 | 5.6330 | | 0.1529 | 10.6667 | 4000 | 0.1814 | 5.4587 | | 0.1408 | 16.0 | 6000 | 0.1802 | 5.4448 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1