--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # xsum_108_5000000_2500000_validation This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("KingKazma/xsum_108_5000000_2500000_validation") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 9 * Number of training documents: 11332
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | said - world - first - one - time | 41 | -1_said_world_first_one | | 0 | said - mr - would - people - also | 813 | 0_said_mr_would_people | | 1 | win - game - league - club - player | 7931 | 1_win_game_league_club | | 2 | sport - olympic - race - gold - world | 2105 | 2_sport_olympic_race_gold | | 3 | round - world - champion - open - golf | 219 | 3_round_world_champion_open | | 4 | murray - match - tennis - set - number | 70 | 4_murray_match_tennis_set | | 5 | race - hamilton - f1 - rosberg - mercedes | 60 | 5_race_hamilton_f1_rosberg | | 6 | yn - ar - ei - yr - wedi | 50 | 6_yn_ar_ei_yr | | 7 | fight - title - boxing - champion - im | 43 | 7_fight_title_boxing_champion |
## Training hyperparameters * calculate_probabilities: True * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.33 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.31.0 * Numba: 0.57.1 * Plotly: 5.13.1 * Python: 3.10.12