#! /usr/bin/python3 src="sbintuitions/modernbert-ja-70m" tgt="KoichiYasuoka/modernbert-japanese-70m-ud-embeds" url="https://github.com/UniversalDependencies/UD_Japanese-GSDLUW" import os d=os.path.basename(url) os.system("test -d "+d+" || git clone --depth=1 "+url) os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done") class UDEmbedsDataset(object): def __init__(self,conllu,tokenizer,oldtokenizer=None,embeddings=None): self.conllu=open(conllu,"r",encoding="utf-8") self.tokenizer=tokenizer self.oldtokenizer=oldtokenizer if oldtokenizer else tokenizer self.embeddings=embeddings self.seeks=[0] label=set(["SYM","SYM.","SYM|_"]) dep=set() s=self.conllu.readline() while s!="": if s=="\n": self.seeks.append(self.conllu.tell()) else: w=s.split("\t") if len(w)==10: if w[0].isdecimal(): p=w[3] q="" if w[5]=="_" else "|"+w[5] d=("|" if w[6]=="0" else "|l-" if int(w[0])<int(w[6]) else "|r-")+w[7] for k in [p,p+".","B-"+p,"B-"+p+".","I-"+p,"I-"+p+".",p+q+"|_",p+q+d]: label.add(k) s=self.conllu.readline() self.label2id={l:i for i,l in enumerate(sorted(label))} def __call__(*args): lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))} for t in args: t.label2id=lid return lid def __del__(self): self.conllu.close() __len__=lambda self:(len(self.seeks)-1)*2 def __getitem__(self,i): self.conllu.seek(self.seeks[int(i/2)]) z,c,t,s=i%2,[],[""],False while t[0]!="\n": t=self.conllu.readline().split("\t") if len(t)==10 and t[0].isdecimal(): if s: t[1]=" "+t[1] c.append(t) s=t[9].find("SpaceAfter=No")<0 x=[True if t[6]=="0" or int(t[6])>j or sum([1 if int(c[i][6])==j+1 else 0 for i in range(j+1,len(c))])>0 else False for j,t in enumerate(c)] if z==0: v=self.tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"] ids,upos=[self.tokenizer.bos_token_id],["SYM."] for i,(j,k) in enumerate(zip(v,c)): if j==[]: j=[self.tokenizer.unk_token_id] p=k[3] if x[i] else k[3]+"." ids+=j upos+=[p] if len(j)==1 else ["B-"+p]+["I-"+p]*(len(j)-1) ids.append(self.tokenizer.eos_token_id) upos.append("SYM.") emb=self.embeddings else: import torch v=self.oldtokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"] if len(x)<127: x=[True]*len(x) w=(len(x)+1)*(len(x)+2)/2 else: w=sum([len(x)-i+1 if b else 0 for i,b in enumerate(x)])+1 for i in range(len(x)): if x[i]==False and w+len(x)-i<8192: x[i]=True w+=len(x)-i+1 p=[t[3] if t[5]=="_" else t[3]+"|"+t[5] for i,t in enumerate(c)] d=[t[7] if t[6]=="0" else "l-"+t[7] if int(t[0])<int(t[6]) else "r-"+t[7] for t in c] ids,upos=[-1],["SYM|_"] for i in range(len(x)): if x[i]: ids.append(i) upos.append(p[i]+"|"+d[i] if c[i][6]=="0" else p[i]+"|_") for j in range(i+1,len(x)): ids.append(j) upos.append(p[j]+"|"+d[j] if int(c[j][6])==i+1 else p[i]+"|"+d[i] if int(c[i][6])==j+1 else p[j]+"|_") if i>0 and w>8192: while w>8192: if upos[-1].endswith("|_"): upos.pop(-1) ids.pop(-1) w-=1 else: break ids.append(-1) upos.append("SYM|_") with torch.no_grad(): m=[] for j in v: if j==[]: j=[self.tokenizer.unk_token_id] m.append(self.embeddings[j,:].sum(axis=0)) m.append(self.embeddings[self.tokenizer.eos_token_id,:]) emb=torch.stack(m) return{"inputs_embeds":emb[ids,:],"labels":[self.label2id[p] for p in upos]} from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DefaultDataCollator,TrainingArguments,Trainer from tokenizers.pre_tokenizers import Sequence,Split from tokenizers import Regex from copy import deepcopy otk=AutoTokenizer.from_pretrained(src) ntk=deepcopy(otk) ntk.backend_tokenizer.pre_tokenizer=Sequence([Split(Regex("[ぁ-ん]"),"isolated"),otk.backend_tokenizer.pre_tokenizer]) trainDS=UDEmbedsDataset("train.conllu",ntk,otk) devDS=UDEmbedsDataset("dev.conllu",ntk,otk) testDS=UDEmbedsDataset("test.conllu",ntk,otk) lid=trainDS(devDS,testDS) cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True) mdl=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True) trainDS.embeddings=mdl.get_input_embeddings().weight arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False) trn=Trainer(args=arg,data_collator=DefaultDataCollator(),model=mdl,train_dataset=trainDS) trn.train() trn.save_model(tgt) otk.save_pretrained(tgt)