File size: 3,241 Bytes
c753a81
f643899
 
 
b020f81
f643899
b020f81
f643899
a8e20c8
b020f81
 
0ef2bc3
 
b020f81
f643899
c753a81
f643899
c753a81
f643899
 
c753a81
 
 
 
 
f643899
 
 
c753a81
f643899
 
b020f81
f643899
 
 
 
 
 
 
 
b020f81
f643899
 
 
 
 
c753a81
f643899
 
 
 
 
 
 
 
 
 
c753a81
 
 
f643899
c753a81
f643899
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy
from transformers import TokenClassificationPipeline

class UniversalDependenciesPipeline(TokenClassificationPipeline):
  def _forward(self,model_inputs):
    import torch
    v=model_inputs["input_ids"][0].tolist()
    with torch.no_grad():
      e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
    return {"logits":e.logits[:,1:-2,:],**model_inputs}
  def postprocess(self,model_outputs,**kwargs):
    if "logits" not in model_outputs:
      return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
    e=model_outputs["logits"].numpy()
    r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
    e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,-numpy.inf)
    g=self.model.config.label2id["X|_|goeswith"]
    m,r=numpy.max(e,axis=2),numpy.tri(e.shape[0])
    for i in range(e.shape[0]):
      for j in range(i+2,e.shape[1]):
        r[i,j]=1
        if numpy.argmax(e[i,j-1])==g and numpy.argmax(m[:,j-1])==i:
          r[i,j]=r[i,j-1]
    e[:,:,g]+=numpy.where(r==0,0,-numpy.inf)
    m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
    h=self.chu_liu_edmonds(m)
    z=[i for i,j in enumerate(h) if i==j]
    if len(z)>1:
      k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
      m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
      h=self.chu_liu_edmonds(m)
    v=[(s,e) for s,e in model_outputs["offset_mapping"][0].tolist() if s<e]
    q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
    g="aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none"
    if g:
      for i,j in reversed(list(enumerate(q[1:],1))):
        if j[-1]=="goeswith" and set([t[-1] for t in q[h[i]+1:i+1]])=={"goeswith"}:
          h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
          v[i-1]=(v[i-1][0],v.pop(i)[1])
          q.pop(i)
    t=model_outputs["sentence"].replace("\n"," ")
    u="# text = "+t+"\n"
    for i,(s,e) in enumerate(v):
      u+="\t".join([str(i+1),t[s:e],t[s:e] if g else "_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
    return u+"\n"
  def chu_liu_edmonds(self,matrix):
    h=numpy.argmax(matrix,axis=0)
    x=[-1 if i==j else j for i,j in enumerate(h)]
    for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
      y=[]
      while x!=y:
        y=list(x)
        for i,j in enumerate(x):
          x[i]=b(x,i,j)
      if max(x)<0:
        return h
    y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
    z=matrix-numpy.max(matrix,axis=0)
    m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
    k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
    h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
    i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
    h[i]=x[k[-1]] if k[-1]<len(x) else i
    return h