File size: 3,350 Bytes
c416d02 6fd5751 a2d7c30 6fd5751 a2d7c30 6fd5751 856b7ac a2d7c30 db4d3d1 a2d7c30 6fd5751 c416d02 747fa9a c416d02 747fa9a c416d02 58474dc c416d02 110ff1b 58474dc a2d7c30 58474dc d585ffc 58474dc ba650cc 58474dc ba650cc a2d7c30 6fd5751 58474dc 6fd5751 58474dc c416d02 58474dc 110ff1b c416d02 110ff1b c416d02 110ff1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import numpy
from transformers import TokenClassificationPipeline
class UniversalDependenciesPipeline(TokenClassificationPipeline):
def _forward(self,model_inputs):
import torch
v=[self.tokenizer.cls_token_id]+[t for t,(s,e) in zip(model_inputs["input_ids"][0].tolist(),model_inputs["offset_mapping"][0].tolist()) if s<e]+[self.tokenizer.sep_token_id]
with torch.no_grad():
e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
return {"logits":e.logits[:,1:-2,:],**model_inputs}
def postprocess(self,model_outputs,**kwargs):
if "logits" not in model_outputs:
return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
e=model_outputs["logits"].numpy()
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,-numpy.inf)
g=self.model.config.label2id["X|_|goeswith"]
m,r=numpy.max(e,axis=2),numpy.tri(e.shape[0])
for i in range(e.shape[0]):
for j in range(i+2,e.shape[1]):
r[i,j]=1
if numpy.argmax(e[i,j-1])==g and numpy.argmax(m[:,j-1])==i:
r[i,j]=r[i,j-1]
e[:,:,g]+=numpy.where(r==0,0,-numpy.inf)
m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
h=self.chu_liu_edmonds(m)
z=[i for i,j in enumerate(h) if i==j]
if len(z)>1:
k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
h=self.chu_liu_edmonds(m)
v=[(s,e) for s,e in model_outputs["offset_mapping"][0].tolist() if s<e]
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
for i,j in reversed(list(enumerate(q[1:],1))):
if j[-1]=="goeswith" and set([t[-1] for t in q[h[i]+1:i+1]])=={"goeswith"}:
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
v[i-1]=(v[i-1][0],v.pop(i)[1])
q.pop(i)
t=model_outputs["sentence"].replace("\n"," ")
u="# text = "+t+"\n"
for i,(s,e) in enumerate(v):
u+="\t".join([str(i+1),t[s:e],"_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
return u+"\n"
def chu_liu_edmonds(self,matrix):
h=numpy.argmax(matrix,axis=0)
x=[-1 if i==j else j for i,j in enumerate(h)]
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
y=[]
while x!=y:
y=list(x)
for i,j in enumerate(x):
x[i]=b(x,i,j)
if max(x)<0:
return h
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
z=matrix-numpy.max(matrix,axis=0)
m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
h[i]=x[k[-1]] if k[-1]<len(x) else i
return h
|