File size: 3,241 Bytes
f8fa84d
bb06bb5
 
 
c1e87d3
bb06bb5
c1e87d3
bb06bb5
d4eb5bf
c1e87d3
 
9c53d86
 
c1e87d3
bb06bb5
f8fa84d
bb06bb5
f8fa84d
bb06bb5
 
f8fa84d
 
 
 
 
bb06bb5
 
 
f8fa84d
bb06bb5
 
c1e87d3
bb06bb5
 
 
 
 
 
 
 
c1e87d3
bb06bb5
 
 
 
 
f8fa84d
bb06bb5
 
 
 
 
 
 
 
 
 
f8fa84d
 
 
bb06bb5
f8fa84d
bb06bb5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy
from transformers import TokenClassificationPipeline

class UniversalDependenciesPipeline(TokenClassificationPipeline):
  def _forward(self,model_inputs):
    import torch
    v=model_inputs["input_ids"][0].tolist()
    with torch.no_grad():
      e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
    return {"logits":e.logits[:,1:-2,:],**model_inputs}
  def postprocess(self,model_outputs,**kwargs):
    if "logits" not in model_outputs:
      return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
    e=model_outputs["logits"].numpy()
    r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
    e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,-numpy.inf)
    g=self.model.config.label2id["X|_|goeswith"]
    m,r=numpy.max(e,axis=2),numpy.tri(e.shape[0])
    for i in range(e.shape[0]):
      for j in range(i+2,e.shape[1]):
        r[i,j]=1
        if numpy.argmax(e[i,j-1])==g and numpy.argmax(m[:,j-1])==i:
          r[i,j]=r[i,j-1]
    e[:,:,g]+=numpy.where(r==0,0,-numpy.inf)
    m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
    h=self.chu_liu_edmonds(m)
    z=[i for i,j in enumerate(h) if i==j]
    if len(z)>1:
      k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
      m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
      h=self.chu_liu_edmonds(m)
    v=[(s,e) for s,e in model_outputs["offset_mapping"][0].tolist() if s<e]
    q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
    g="aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none"
    if g:
      for i,j in reversed(list(enumerate(q[1:],1))):
        if j[-1]=="goeswith" and set([t[-1] for t in q[h[i]+1:i+1]])=={"goeswith"}:
          h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
          v[i-1]=(v[i-1][0],v.pop(i)[1])
          q.pop(i)
    t=model_outputs["sentence"].replace("\n"," ")
    u="# text = "+t+"\n"
    for i,(s,e) in enumerate(v):
      u+="\t".join([str(i+1),t[s:e],t[s:e] if g else "_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
    return u+"\n"
  def chu_liu_edmonds(self,matrix):
    h=numpy.argmax(matrix,axis=0)
    x=[-1 if i==j else j for i,j in enumerate(h)]
    for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
      y=[]
      while x!=y:
        y=list(x)
        for i,j in enumerate(x):
          x[i]=b(x,i,j)
      if max(x)<0:
        return h
    y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
    z=matrix-numpy.max(matrix,axis=0)
    m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
    k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
    h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
    i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
    h[i]=x[k[-1]] if k[-1]<len(x) else i
    return h