File size: 3,241 Bytes
8c8de0e 3efdd53 775ba1d 3efdd53 775ba1d 3efdd53 d4b8c36 775ba1d 994f112 775ba1d 3efdd53 8c8de0e 3efdd53 8c8de0e 3efdd53 8c8de0e 3efdd53 8c8de0e 3efdd53 775ba1d 3efdd53 775ba1d 3efdd53 8c8de0e 3efdd53 8c8de0e 3efdd53 8c8de0e 3efdd53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import numpy
from transformers import TokenClassificationPipeline
class UniversalDependenciesPipeline(TokenClassificationPipeline):
def _forward(self,model_inputs):
import torch
v=model_inputs["input_ids"][0].tolist()
with torch.no_grad():
e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
return {"logits":e.logits[:,1:-2,:],**model_inputs}
def postprocess(self,model_outputs,**kwargs):
if "logits" not in model_outputs:
return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
e=model_outputs["logits"].numpy()
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,-numpy.inf)
g=self.model.config.label2id["X|_|goeswith"]
m,r=numpy.max(e,axis=2),numpy.tri(e.shape[0])
for i in range(e.shape[0]):
for j in range(i+2,e.shape[1]):
r[i,j]=1
if numpy.argmax(e[i,j-1])==g and numpy.argmax(m[:,j-1])==i:
r[i,j]=r[i,j-1]
e[:,:,g]+=numpy.where(r==0,0,-numpy.inf)
m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
h=self.chu_liu_edmonds(m)
z=[i for i,j in enumerate(h) if i==j]
if len(z)>1:
k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
h=self.chu_liu_edmonds(m)
v=[(s,e) for s,e in model_outputs["offset_mapping"][0].tolist() if s<e]
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
g="aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none"
if g:
for i,j in reversed(list(enumerate(q[1:],1))):
if j[-1]=="goeswith" and set([t[-1] for t in q[h[i]+1:i+1]])=={"goeswith"}:
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
v[i-1]=(v[i-1][0],v.pop(i)[1])
q.pop(i)
t=model_outputs["sentence"].replace("\n"," ")
u="# text = "+t+"\n"
for i,(s,e) in enumerate(v):
u+="\t".join([str(i+1),t[s:e],t[s:e] if g else "_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
return u+"\n"
def chu_liu_edmonds(self,matrix):
h=numpy.argmax(matrix,axis=0)
x=[-1 if i==j else j for i,j in enumerate(h)]
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
y=[]
while x!=y:
y=list(x)
for i,j in enumerate(x):
x[i]=b(x,i,j)
if max(x)<0:
return h
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
z=matrix-numpy.max(matrix,axis=0)
m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
h[i]=x[k[-1]] if k[-1]<len(x) else i
return h
|