--- library_name: transformers license: apache-2.0 base_model: Visual-Attention-Network/van-tiny tags: - generated_from_trainer metrics: - accuracy model-index: - name: SPIE_MULTICLASS_CHINA_1_2 results: [] --- # SPIE_MULTICLASS_CHINA_1_2 This model is a fine-tuned version of [Visual-Attention-Network/van-tiny](https://huggingface.co/Visual-Attention-Network/van-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1184 - Accuracy: 0.9617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4991 | 0.9886 | 65 | 0.3683 | 0.8967 | | 0.1981 | 1.9924 | 131 | 0.1733 | 0.935 | | 0.1855 | 2.9962 | 197 | 0.1410 | 0.95 | | 0.1262 | 4.0 | 263 | 0.1118 | 0.9675 | | 0.1217 | 4.9430 | 325 | 0.1184 | 0.9617 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0