--- library_name: transformers license: apache-2.0 base_model: Visual-Attention-Network/van-tiny tags: - generated_from_trainer metrics: - accuracy model-index: - name: SPIE_MULTICLASS_CHINA_2_0 results: [] --- # SPIE_MULTICLASS_CHINA_2_0 This model is a fine-tuned version of [Visual-Attention-Network/van-tiny](https://huggingface.co/Visual-Attention-Network/van-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3441 - Accuracy: 0.8901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.7165 | 0.96 | 18 | 1.0539 | 0.7504 | | 0.842 | 1.9733 | 37 | 0.5513 | 0.8507 | | 0.4818 | 2.9867 | 56 | 0.4022 | 0.8832 | | 0.3813 | 4.0 | 75 | 0.3546 | 0.8911 | | 0.3359 | 4.8 | 90 | 0.3441 | 0.8901 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0