--- license: apache-2.0 language: - zh - en tags: - intent-classification - chinese - albert - binary-classification - transformers - diner-call base_model: - ckiplab/albert-base-chinese datasets: - Luigi/dinercall-intent pipeline_tag: text-classification model-index: - name: albert-base-chinese-dinercall-intent results: - task: name: Intent Classification type: text-classification dataset: name: DinerCall Intent type: Luigi/dinercall-intent metrics: - name: Accuracy type: accuracy value: 0.85 --- # albert-base-chinese-dinercall-intent A binary intent classification model fine-tuned from [`ckiplab/albert-base-chinese`](https://huggingface.co/ckiplab/albert-base-chinese) on the [`Luigi/dinercall-intent`](https://huggingface.co/datasets/Luigi/dinercall-intent) dataset. This model identifies whether a Chinese restaurant phone call contains a reservation intent (`label=1`) or not (`label=0`). ## Model Details - **Base model**: `ckiplab/albert-base-chinese` - **Task**: Binary intent classification - **Language**: Traditional Chinese - **Labels**: - `0`: No intent to book a table - `1`: Intent to make a reservation ## Use Cases This model is designed for voice AI assistants in restaurants to automatically identify reservation intents from spoken or transcribed customer sentences. ## Example Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained("Luigi/albert-base-chinese-dinercall-intent") model = AutoModelForSequenceClassification.from_pretrained("Luigi/albert-base-chinese-dinercall-intent") inputs = tokenizer("你好,我想訂位,今天晚上七點兩位", return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted = torch.argmax(logits, dim=-1).item() print(f"Prediction: {'Reservation intent' if predicted == 1 else 'No intent'}")