---
license: cc-by-nc-sa-4.0
language:
- en
base_model:
- lmms-lab/llava-onevision-qwen2-0.5b-ov
pipeline_tag: video-text-to-text
tags:
- Action
- Video
- MQA
- multimodal
- MLLMs
- LLaVAction
metrics:
- accuracy
library_name: transformers
---
# LLaVAction-0.5B
LLaVAction: evaluating and training multi-modal large language models for action recognition
[Shaokai Ye](https://yeshaokai.github.io/)1**
[Haozhe Qi](https://people.epfl.ch/haozhe.qi)1**
[Alexander Mathis](https://mathislab.org/)1†
[Mackenzie Weygandt Mathis](https://www.mackenziemathislab.org/mackenziemathis)1†‡
1 EPFL
** First authors † Senior Authors ‡ Corresponding Author
\[[arXiv Paper](arxiv.org/abs/2503.18712)\] \[[Project Page](https://mmathislab.github.io/llavaction/)\] \[[Github Repo](https://github.com/AdaptiveMotorControlLab/LLaVAction)\]
## Model Summary
The LLaVAction-0.5B model is trained on EPIC-KITCHENS-100-MQA, based on Qwen2 language model with a context window of 32K tokens.
- **Project Page**: [https://mmathislab.github.io/llavaction/](https://mmathislab.github.io/llavaction/)
- **Paper**: For more details, please check our [paper](https://arxiv.org/abs/tbd)
- **Repository**: [https://github.com/AdaptiveMotorControlLab/LLaVAction](https://github.com/AdaptiveMotorControlLab/LLaVAction)
- **Point of Contact**: [Mackenzie Mathis](https://people.epfl.ch/mackenzie.mathis)
- **Languages**: English
-
## Useage
### Intended use
The model was trained on EPIC-KITCHENS-100-MQA. It's intended to be used on videos that are similar to EPIC-KITCHENS-100.
### Generation
We provide the simple generation process for using our model. For more details, you could refer to our [Github](https://github.com/AdaptiveMotorControlLab/LLaVAction).
```python
!pip install llavaction
from llavaction.model.builder import load_pretrained_model
from llavaction.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llavaction.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llavaction.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")
#Your video (it assumes an egocentric view point)
video_path = "XXXX"
#These are the prompts we trained with, but you can test others:
perspective_prompt = "You are seeing this video from egocentric view and you are the person. Your hands are sometimes interacting with objects. What action are you doing?"
task_prompt = "Describe in details what you see from the video frames."
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
spare_frames = vr.get_batch(frame_idx).asnumpy()
# import pdb;pdb.set_trace()
return spare_frames,frame_time,video_time
pretrained = "MLAdaptiveIntelligence/LLaVAction-0.5B"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
model.eval()
max_frames_num = 64
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
video = [video]
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. "
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruction}\n{perspective_prompt} {task_prompt}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
input_ids,
images=video,
modalities= ["video"],
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
```
## Training
See details in Ye et al. 2025: arxiv.org/abs/2503.18712
### Model
- **Architecture**: SO400M + Qwen2
- **Initialized Model**: lmms-lab/llava-onevision-qwen2-0.5b-ov
- **Data**: EPIC-KITCHENS-100-MQA, 2 epochs, full model
- **Precision**: bfloat16
### Hardware & Software
GPUs: 32 * Nvidia GH-200 (for whole model series training)
Orchestration: HuggingFace Trainer
Neural networks: PyTorch
## Citation
arXiv: arxiv.org/abs/2503.18712
```bibtex
@article{YeQi2025llavaction,
title={LLaVAction: evaluating and training multi-modal large language models for action recognition},
author={Ye, Shaokai and Qi, Haozhe and Mathis, Alexander and Mathis, Mackenzie W.},
journal={arXiv preprint},
year={2025}
}
```