--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - RetaSy/quranic_audio_dataset metrics: - wer model-index: - name: Whisper Base Ar - GPTeam results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: quranic_audio_dataset type: RetaSy/quranic_audio_dataset args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 29.20499342969777 --- # Whisper Base Ar - GPTeam This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the quranic_audio_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0527 - Wer: 29.2050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0771 | 2.9240 | 1000 | 0.0722 | 34.2806 | | 0.0183 | 5.8480 | 2000 | 0.0553 | 30.8476 | | 0.0062 | 8.7719 | 3000 | 0.0527 | 30.7654 | | 0.0023 | 11.6959 | 4000 | 0.0527 | 29.2050 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0