--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-dropout0.25-split3-speed results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.8233333333333334 --- # distilhubert-finetuned-gtzan-dropout0.25-split3-speed This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.0262 - Accuracy: 0.8233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1701 | 1.0 | 169 | 1.2158 | 0.6633 | | 1.0623 | 2.0 | 338 | 0.9563 | 0.7033 | | 0.6686 | 3.0 | 507 | 0.8979 | 0.7067 | | 0.4958 | 4.0 | 676 | 0.8167 | 0.79 | | 0.3174 | 5.0 | 845 | 0.8568 | 0.8033 | | 0.1967 | 6.0 | 1014 | 0.8837 | 0.8067 | | 0.1126 | 7.0 | 1183 | 0.9364 | 0.8267 | | 0.0536 | 8.0 | 1352 | 1.0097 | 0.8233 | | 0.039 | 9.0 | 1521 | 1.0470 | 0.82 | | 0.0227 | 10.0 | 1690 | 1.0262 | 0.8233 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0 - Datasets 3.3.2 - Tokenizers 0.21.0