--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - precision - recall - accuracy - f1 model-index: - name: biobert-v1.1-text-classifier-corpus-ptc results: [] --- # biobert-v1.1-text-classifier-corpus-ptc This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8871 - Precision: 0.6734 - Recall: 0.6476 - Accuracy: 0.7495 - F1: 0.6556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:| | 0.8749 | 1.0 | 801 | 0.7585 | 0.5507 | 0.5801 | 0.7291 | 0.5628 | | 0.608 | 2.0 | 1602 | 0.7347 | 0.6817 | 0.5910 | 0.7407 | 0.5786 | | 0.5071 | 3.0 | 2403 | 0.8002 | 0.6852 | 0.6272 | 0.7501 | 0.6331 | | 0.3756 | 4.0 | 3204 | 0.8416 | 0.6989 | 0.6411 | 0.7529 | 0.6528 | | 0.3092 | 5.0 | 4005 | 0.8871 | 0.6734 | 0.6476 | 0.7495 | 0.6556 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2