|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Phi-4-MM model.""" |
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers import AutoConfig, AutoModelForCausalLM, PretrainedConfig |
|
|
|
|
|
from .processing_phi4mm import InputMode |
|
|
|
from .speech_conformer_encoder import ConformerEncoder |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "TBA" |
|
_CONFIG_FOR_DOC = "Qwen2MMConfig" |
|
|
|
|
|
_IMAGE_SPECIAL_TOKEN_ID = 1516444 |
|
_AUDIO_SPECIAL_TOKEN_ID = 151644 |
|
_COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE = [-9999, -1] |
|
_COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE = [float('-inf'), -10000] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Phi4MMAudioEmbedding(nn.Module): |
|
"""Audio embedding.""" |
|
|
|
def __init__(self, config: PretrainedConfig, **kwargs) -> None: |
|
super().__init__() |
|
self.config = config |
|
|
|
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size |
|
|
|
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): |
|
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop |
|
self.drop = nn.Dropout(embd_drop) |
|
else: |
|
self.drop = None |
|
|
|
audio_dim_out = None |
|
logger.info(f"create audio processor {config.audio_processor}") |
|
self.layer_idx = -2 |
|
|
|
if isinstance(config.audio_processor, dict) and config.audio_processor.get('name', None) == "cascades": |
|
encoder_config = config.audio_processor.get("config", None) |
|
assert encoder_config is not None |
|
self.encoder = ConformerEncoder(**encoder_config) |
|
|
|
|
|
|
|
|
|
self.encoder.post_init({}) |
|
|
|
audio_dim_out = encoder_config["attention_dim"] |
|
n_mels = encoder_config["input_size"] |
|
else: |
|
raise NotImplementedError |
|
|
|
assert audio_dim_out is not None, "Remember to set values for audio_dim_out" |
|
self.audio_dim_out = audio_dim_out |
|
self.audio_dim_in = n_mels |
|
|
|
self.freeze_audio_processor = kwargs.get('freeze_audio_processor', False) |
|
logger.info(f'freeze_audio_processor = {self.freeze_audio_processor}') |
|
|
|
self.downsample_rate = kwargs.get('downsample_rate', 1) |
|
|
|
enable_gradient_checkpointing = kwargs.get('enable_gradient_checkpointing', False) |
|
if enable_gradient_checkpointing: |
|
self.encoder.gradient_checkpointing_enable() |
|
logger.info(f'gradient checkpointing enabled for audio processor') |
|
|
|
projection_cls = kwargs.get('projection_cls', 'linear') |
|
if projection_cls == 'linear': |
|
self.audio_projection = nn.Linear(audio_dim_out, hidden_size) |
|
elif projection_cls == 'mlp': |
|
|
|
|
|
dim_projection = hidden_size |
|
depth = 2 |
|
self.linear_downsample_rate = self.downsample_rate |
|
|
|
layers_for_speech = [nn.Linear(audio_dim_out * self.linear_downsample_rate, dim_projection)] |
|
for _ in range(1, depth): |
|
layers_for_speech.extend([nn.GELU(), nn.Linear(dim_projection, dim_projection)]) |
|
audio_projection_for_speech = nn.Sequential(*layers_for_speech) |
|
|
|
layers_for_vision = [nn.Linear(audio_dim_out * self.linear_downsample_rate, dim_projection)] |
|
for _ in range(1, depth): |
|
layers_for_vision.extend([nn.GELU(), nn.Linear(dim_projection, dim_projection)]) |
|
|
|
|
|
self.audio_projection = nn.ModuleDict({ |
|
'speech': audio_projection_for_speech |
|
|
|
}) |
|
else: |
|
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') |
|
|
|
self.vocab_size = config.vocab_size |
|
self.input_embeds = None |
|
self.audio_embed_sizes = None |
|
|
|
def post_init(self, audio_config): |
|
|
|
if audio_config.get('name', None) == "cascades": |
|
init_model_config = audio_config.get("init_model", {}) |
|
self.encoder.post_init(init_model_config) |
|
|
|
|
|
if "init_model" in audio_config: |
|
audio_config.pop("init_model") |
|
|
|
def set_audio_embeds(self, input_embeds: torch.FloatTensor) -> None: |
|
self.input_embeds = input_embeds |
|
|
|
def set_audio_embed_sizes(self, audio_embed_sizes: torch.LongTensor) -> None: |
|
self.audio_embed_sizes = audio_embed_sizes |
|
|
|
def get_audio_features(self, input_embeds: torch.FloatTensor, audio_attention_mask: torch.Tensor, audio_projection_mode: str='speech'): |
|
|
|
if self.freeze_audio_processor: |
|
with torch.no_grad(): |
|
audio_features, masks = self.encoder(input_embeds, audio_attention_mask) |
|
else: |
|
audio_features, masks = self.encoder(input_embeds, audio_attention_mask) |
|
|
|
if isinstance(self.audio_projection, nn.Sequential): |
|
audio_set_tensor = self.audio_projection(audio_features) |
|
elif isinstance(self.audio_projection, nn.ModuleDict): |
|
audio_set_tensor = self.audio_projection[audio_projection_mode](audio_features) |
|
else: |
|
raise NotImplementedError |
|
|
|
return audio_set_tensor |
|
|
|
def forward(self, input_ids: torch.LongTensor, input_embeds: torch.FloatTensor, audio_embed_sizes=None, audio_attention_mask=None, audio_projection_mode='speech', **kwargs) -> torch.FloatTensor: |
|
''' |
|
arguments: |
|
input_ids: input text ids (B, U) |
|
input_embeds: audio features (B, T, D) B: num audios in a sequence |
|
''' |
|
|
|
if self.input_embeds is not None: |
|
input_embeds = self.input_embeds.clone() |
|
if self.audio_embed_sizes is not None: |
|
audio_embed_sizes = self.audio_embed_sizes.clone() |
|
|
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
MAX_INPUT_ID = int(1e9) |
|
|
|
with torch.no_grad(): |
|
positions = torch.nonzero(input_ids == _AUDIO_SPECIAL_TOKEN_ID, as_tuple=False) |
|
positions_tuple = torch.nonzero(input_ids == _AUDIO_SPECIAL_TOKEN_ID, as_tuple=True) |
|
|
|
if isinstance(self.audio_projection, nn.Sequential): |
|
target_device = self.audio_projection[0].bias.device |
|
target_dtype = self.audio_projection[0].bias.dtype |
|
elif isinstance(self.audio_projection, nn.ModuleDict): |
|
target_device = self.audio_projection[audio_projection_mode][0].bias.device |
|
target_dtype = self.audio_projection[audio_projection_mode][0].bias.dtype |
|
else: |
|
target_device = self.audio_projection.bias.device |
|
target_dtype = self.audio_projection.bias.dtype |
|
|
|
if input_embeds is not None: |
|
input_embeds = input_embeds.to(target_device).to(target_dtype) |
|
|
|
|
|
|
|
if len(positions.tolist()) > 0: |
|
audio_set_tensor = self.get_audio_features(input_embeds, audio_attention_mask, audio_projection_mode) |
|
else: |
|
|
|
|
|
if self.training: |
|
audio_embeds = torch.zeros(1, 500, self.audio_dim_in).to(target_device).to(target_dtype) |
|
audio_attention_mask = audio_embeds.new_ones(audio_embeds.size()[:2]).long() |
|
audio_set_tensor = self.get_audio_features(audio_embeds, audio_attention_mask, audio_projection_mode) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = kwargs['wte'](input_ids) |
|
|
|
|
|
if len(positions.tolist()) > 0: |
|
|
|
assert audio_embed_sizes.sum().item() == len(positions), \ |
|
f"please ensure the encoder outputs have the same length as defined in input_ids! \n audio_embed_sizes.sum().item(): {audio_embed_sizes.sum().item()} \n len(positions): {len(positions)} \n audio_embed_sizes: {audio_embed_sizes} \n positions: {positions} \n input_ids.shape \n {input_ids.shape}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
merged_audio_set_tensor = torch.cat([ |
|
audio_set_tensor[i, :audio_embed_sizes[i], :] |
|
for i in range(len(audio_embed_sizes)) |
|
], dim=0) |
|
merged_audio_set_tensor = merged_audio_set_tensor.to(hidden_states.dtype).to(hidden_states.device) |
|
|
|
|
|
with torch.autocast(device_type=hidden_states.device.type, enabled=False): |
|
new_hidden_states = hidden_states.index_put( |
|
indices=positions_tuple, |
|
values=merged_audio_set_tensor, |
|
accumulate=False |
|
) |
|
hidden_states = new_hidden_states |
|
else: |
|
if self.training: |
|
hidden_states = hidden_states + (0 * audio_set_tensor[:,0].to(hidden_states.dtype).to(hidden_states.device)).sum() |
|
|
|
if self.drop is not None: |
|
hidden_states = self.drop(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class Phi4MMImageAudioEmbedding(nn.Module): |
|
"""Image-audio embedding.""" |
|
|
|
def __init__(self, config: PretrainedConfig, **kwargs) -> None: |
|
super().__init__() |
|
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.audio_input_id = kwargs.get('audio_input_id', -10000) |
|
|
|
|
|
|
|
|
|
|
|
self.audio_embd_layer_kwargs = kwargs['audio_embd_layer'] |
|
self.audio_embed = Phi4MMAudioEmbedding(config, **self.audio_embd_layer_kwargs) |
|
|
|
|
|
|
|
|
|
self.input_audio_embeds = None |
|
self.audio_embed_sizes = None |
|
|
|
def post_init(self, audio_config): |
|
|
|
|
|
self.audio_embed.post_init(audio_config) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_input_audio_embeds(self, input_audio_embeds: torch.FloatTensor) -> None: |
|
self.input_audio_embeds = input_audio_embeds |
|
|
|
def set_audio_embed_sizes(self, audio_embed_sizes: torch.LongTensor) -> None: |
|
self.audio_embed_sizes = audio_embed_sizes |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
input_embeds, |
|
input_image_embeds: Optional[torch.FloatTensor]=None, |
|
input_audio_embeds: Optional[torch.FloatTensor]=None, |
|
image_sizes=None, |
|
image_attention_mask=None, |
|
audio_embed_sizes=None, |
|
audio_attention_mask=None, |
|
audio_projection_mode='speech', |
|
wte=None, |
|
) -> torch.FloatTensor: |
|
|
|
MAX_INPUT_ID = int(1e9) |
|
assert -MAX_INPUT_ID < self.audio_input_id |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.input_audio_embeds is not None: |
|
assert input_audio_embeds is None |
|
input_audio_embeds = self.input_audio_embeds.clone() |
|
self.input_audio_embeds = None |
|
|
|
if self.audio_embed_sizes is not None: |
|
assert audio_embed_sizes is None |
|
audio_embed_sizes = self.audio_embed_sizes.clone() |
|
|
|
|
|
|
|
|
|
|
|
|
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
|
|
|
|
with torch.no_grad(): |
|
new_input_ids = input_ids.clone() |
|
|
|
|
|
new_input_ids[(input_ids >= _COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE[0]) & |
|
(input_ids <= _COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE[1])] = _AUDIO_SPECIAL_TOKEN_ID |
|
input_ids = new_input_ids |
|
|
|
|
|
|
|
|
|
|
|
assert input_embeds is None |
|
|
|
|
|
if self.training: |
|
assert input_audio_embeds is not None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if input_audio_embeds is not None: |
|
audio_hidden_states = self.audio_embed( |
|
input_ids=input_ids, |
|
input_embeds=input_audio_embeds, |
|
audio_embed_sizes=audio_embed_sizes, |
|
audio_attention_mask=audio_attention_mask, |
|
wte=wte, |
|
audio_projection_mode=audio_projection_mode, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if input_audio_embeds is not None: |
|
hidden_states = audio_hidden_states |
|
else: |
|
assert wte is not None |
|
hidden_states = wte(input_ids) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS |
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
from transformers.processing_utils import Unpack |
|
from transformers.utils import ( |
|
LossKwargs, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.utils.deprecation import deprecate_kwarg |
|
from .configuration_qwen2mm import Qwen2MMConfig |
|
|
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "meta-qwen2/Qwen2-2-7b-hf" |
|
_CONFIG_FOR_DOC = "Qwen2MMConfig" |
|
|
|
|
|
class Qwen2MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def eager_attention_forward( |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
scaling: float, |
|
dropout: float = 0.0, |
|
**kwargs, |
|
): |
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class Qwen2Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: Qwen2MMConfig, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.scaling = self.head_dim**-0.5 |
|
self.attention_dropout = config.attention_dropout |
|
self.is_causal = True |
|
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True) |
|
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) |
|
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) |
|
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
sliding_window = None |
|
if ( |
|
self.config.use_sliding_window |
|
and getattr(self.config, "sliding_window", None) is not None |
|
and self.layer_idx >= self.config.max_window_layers |
|
): |
|
sliding_window = self.config.sliding_window |
|
|
|
attention_interface: Callable = eager_attention_forward |
|
if self.config._attn_implementation != "eager": |
|
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): |
|
logger.warning_once( |
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " |
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
else: |
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
scaling=self.scaling, |
|
sliding_window=sliding_window, |
|
**kwargs, |
|
) |
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
return attn_output, attn_weights |
|
|
|
|
|
class Qwen2RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Qwen2RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
class Qwen2DecoderLayer(nn.Module): |
|
def __init__(self, config: Qwen2MMConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx) |
|
self.mlp = Qwen2MLP(config) |
|
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
if config.sliding_window and config._attn_implementation != "flash_attention_2": |
|
logger.warning_once( |
|
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " |
|
"unexpected results may be encountered." |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class Qwen2RotaryEmbedding(nn.Module): |
|
def __init__(self, config: Qwen2MMConfig, device=None): |
|
super().__init__() |
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
def _dynamic_frequency_update(self, position_ids, device): |
|
""" |
|
dynamic RoPE layers should recompute `inv_freq` in the following situations: |
|
1 - growing beyond the cached sequence length (allow scaling) |
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) |
|
""" |
|
seq_len = torch.max(position_ids) + 1 |
|
if seq_len > self.max_seq_len_cached: |
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: |
|
|
|
|
|
self.original_inv_freq = self.original_inv_freq.to(device) |
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) |
|
self.max_seq_len_cached = self.original_max_seq_len |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids): |
|
if "dynamic" in self.rope_type: |
|
self._dynamic_frequency_update(position_ids, device=x.device) |
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
|
|
|
|
cos = cos * self.attention_scaling |
|
sin = sin * self.attention_scaling |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
QWEN2_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`Qwen2MMConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", |
|
QWEN2_START_DOCSTRING, |
|
) |
|
class Qwen2PreTrainedModel(PreTrainedModel): |
|
config_class = Qwen2MMConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Qwen2DecoderLayer"] |
|
_skip_keys_device_placement = ["past_key_values"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_flex_attn = True |
|
_supports_cache_class = True |
|
_supports_quantized_cache = True |
|
_supports_static_cache = True |
|
_supports_attention_backend = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
QWEN2_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance, see our |
|
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", |
|
QWEN2_START_DOCSTRING, |
|
) |
|
class Qwen2MMModel(Qwen2PreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`] |
|
|
|
Args: |
|
config: Qwen2MMConfig |
|
""" |
|
|
|
def __init__(self, config: Qwen2MMConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
|
|
self.embed_tokens_extend = None |
|
if isinstance(config.embd_layer, dict): |
|
embedding_config = { |
|
'embedding_cls': config.embd_layer['embedding_cls'], |
|
**config.embd_layer |
|
} |
|
self.embed_tokens_extend = Phi4MMImageAudioEmbedding(config, **embedding_config) |
|
self._attn_implementation = config._attn_implementation |
|
|
|
|
|
self.layers = nn.ModuleList( |
|
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.rotary_emb = Qwen2RotaryEmbedding(config=config) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) |
|
def forward( |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
input_image_embeds: Optional[torch.FloatTensor] = None, |
|
image_sizes: Optional[torch.LongTensor] = None, |
|
image_attention_mask=None, |
|
input_audio_embeds: Optional[torch.FloatTensor] = None, |
|
audio_embed_sizes=None, |
|
audio_attention_mask=None, |
|
audio_projection_mode=None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
) |
|
use_cache = False |
|
|
|
|
|
|
|
|
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens_extend( |
|
input_ids=input_ids, |
|
input_embeds=inputs_embeds, |
|
input_image_embeds=input_image_embeds, |
|
input_audio_embeds=input_audio_embeds, |
|
image_sizes=image_sizes, |
|
image_attention_mask=image_attention_mask, |
|
audio_embed_sizes=audio_embed_sizes, |
|
audio_attention_mask=audio_attention_mask, |
|
audio_projection_mode=audio_projection_mode, |
|
wte=self.embed_tokens, |
|
) |
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = DynamicCache() |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
position_embeddings, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**flash_attn_kwargs, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
output = BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values if use_cache else None, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
return output if return_dict else output.to_tuple() |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool, |
|
): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and past_key_values is not None: |
|
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] |
|
if is_padding_right: |
|
raise ValueError( |
|
"You are attempting to perform batched generation with padding_side='right'" |
|
" this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to " |
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
) |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) |
|
|
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and not (using_static_cache or using_sliding_window_cache) |
|
and not output_attentions |
|
): |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
sliding_window=self.config.sliding_window, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
|
|
if using_sliding_window_cache or using_static_cache: |
|
target_length = past_key_values.get_max_cache_shape() |
|
|
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
device=device, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
config=self.config, |
|
past_key_values=past_key_values, |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type in ["cuda", "xpu"] |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
@staticmethod |
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
config: Qwen2MMConfig, |
|
past_key_values: Cache, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
device (`torch.device`): |
|
The device to plcae the 4D attention mask on. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
config (`Qwen2MMConfig`): |
|
The model's configuration class |
|
past_key_values (`Cache`): |
|
The cache class that is being used currently to generate |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
) |
|
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
if config.sliding_window is not None: |
|
|
|
|
|
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: |
|
sliding_attend_mask = torch.arange(target_length, device=device) <= ( |
|
cache_position.reshape(-1, 1) - config.sliding_window |
|
) |
|
diagonal_attend_mask.bitwise_or_(sliding_attend_mask) |
|
causal_mask *= diagonal_attend_mask |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
if attention_mask.shape[-1] > target_length: |
|
attention_mask = attention_mask[:, :target_length] |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
causal_mask.device |
|
) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
return causal_mask |
|
|
|
|
|
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... |
|
|
|
|
|
class Qwen2MMForCausalLM(Qwen2PreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = Qwen2MMModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") |
|
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
input_image_embeds: Optional[torch.FloatTensor] = None, |
|
image_sizes: Optional[torch.LongTensor] = None, |
|
image_attention_mask=None, |
|
input_audio_embeds: Optional[torch.FloatTensor] = None, |
|
audio_embed_sizes=None, |
|
audio_attention_mask=None, |
|
input_mode=None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
num_logits_to_keep: int = 0, |
|
|
|
|
|
**kwargs: Unpack[KwargsForCausalLM], |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
num_logits_to_keep (`int` or `torch.Tensor`, *optional*): |
|
If an `int`, compute logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all |
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that |
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size. |
|
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. |
|
This is useful when using packed tensor format (single dimension for batch and sequence length). |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM |
|
|
|
>>> model = Qwen2ForCausalLM.from_pretrained("meta-qwen2/Qwen2-2-7b-hf") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf") |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if isinstance(input_mode, torch.Tensor): |
|
|
|
input_mode = input_mode[0].item() |
|
input_mode = InputMode(input_mode) |
|
|
|
if input_mode in [InputMode.VISION_SPEECH, InputMode.VISION]: |
|
|
|
audio_projection_mode = 'vision' |
|
elif input_mode == InputMode.SPEECH: |
|
|
|
audio_projection_mode = 'speech' |
|
elif input_mode == InputMode.LANGUAGE: |
|
|
|
audio_projection_mode = 'speech' |
|
else: |
|
raise ValueError(f"Invalid input_mode: {input_mode}") |
|
|
|
|
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
input_image_embeds=input_image_embeds, |
|
image_sizes=image_sizes, |
|
image_attention_mask=image_attention_mask, |
|
input_audio_embeds=input_audio_embeds, |
|
audio_embed_sizes=audio_embed_sizes, |
|
audio_attention_mask=audio_attention_mask, |
|
audio_projection_mode=audio_projection_mode, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
slice_indices = slice(-num_logits_to_keep, None) if isinstance(num_logits_to_keep, int) else num_logits_to_keep |
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
input_image_embeds=None, |
|
image_sizes=None, |
|
image_attention_mask=None, |
|
input_audio_embeds=None, |
|
audio_embed_sizes=None, |
|
audio_attention_mask=None, |
|
input_mode=None, |
|
cache_position=None, |
|
position_ids=None, |
|
use_cache=True, |
|
num_logits_to_keep=None, |
|
**kwargs |
|
): |
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
past_key_values |
|
and self.config.rope_scaling |
|
and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1 |
|
): |
|
past_length = cache_position[0] |
|
if past_length <= self.config.original_max_position_embeddings: |
|
past_key_values = None |
|
|
|
model_inputs = super().prepare_inputs_for_generation( |
|
input_ids=input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
input_image_embeds=input_image_embeds, |
|
image_sizes=image_sizes, |
|
image_attention_mask=image_attention_mask, |
|
input_audio_embeds=input_audio_embeds, |
|
audio_embed_sizes=audio_embed_sizes, |
|
audio_attention_mask=audio_attention_mask, |
|
input_mode=input_mode, |
|
cache_position=cache_position, |
|
position_ids=position_ids, |
|
use_cache=use_cache, |
|
num_logits_to_keep=num_logits_to_keep, |
|
**kwargs, |
|
) |
|
return model_inputs |
|
|
|
|
|
|
|
|
|
|
|
AutoConfig.register("qwen2-mm", Qwen2MMConfig) |
|
AutoModelForCausalLM.register(Qwen2MMConfig, Qwen2MMForCausalLM) |
|
Qwen2MMConfig.register_for_auto_class() |
|
Qwen2MMForCausalLM.register_for_auto_class("AutoModelForCausalLM") |
|
|