SKNahin commited on
Commit
7ac1039
·
verified ·
1 Parent(s): c46fbb0

Upload Qwen2MMForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/azureuser/phi4/qwen_works/Speech-to-Text-Training/MODELS/Qwen-Nahin-3-6/checkpoint-201000",
3
+ "architectures": [
4
+ "Qwen2MMForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "audio_processor": {
9
+ "config": {
10
+ "activation": "swish",
11
+ "activation_checkpointing": {
12
+ "interval": 1,
13
+ "module": "transformer",
14
+ "offload": false
15
+ },
16
+ "attention_dim": 1024,
17
+ "attention_heads": 16,
18
+ "batch_norm": false,
19
+ "bias_in_glu": true,
20
+ "causal": true,
21
+ "chunk_size": -1,
22
+ "cnn_layer_norm": true,
23
+ "conv_activation": "swish",
24
+ "conv_glu_type": "swish",
25
+ "depthwise_multiplier": 1,
26
+ "depthwise_seperable_out_channel": 1024,
27
+ "dropout_rate": 0.0,
28
+ "encoder_embedding_config": {
29
+ "input_size": 80
30
+ },
31
+ "ext_pw_kernel_size": 1,
32
+ "ext_pw_out_channel": 1024,
33
+ "input_layer": "nemo_conv",
34
+ "input_size": 80,
35
+ "kernel_size": 3,
36
+ "left_chunk": 18,
37
+ "linear_units": 1536,
38
+ "nemo_conv_settings": {
39
+ "conv_channels": 1024
40
+ },
41
+ "num_blocks": 24,
42
+ "relative_attention_bias_args": {
43
+ "t5_bias_max_distance": 500,
44
+ "type": "t5"
45
+ },
46
+ "time_reduction": 8
47
+ },
48
+ "name": "cascades"
49
+ },
50
+ "auto_map": {
51
+ "AutoConfig": "configuration_qwen2mm.Qwen2MMConfig",
52
+ "AutoModelForCausalLM": "modeling_phi4mm.Qwen2MMForCausalLM",
53
+ "AutoTokenizer": "./"
54
+ },
55
+ "bos_token_id": 151644,
56
+ "embd_layer": {
57
+ "audio_embd_layer": {
58
+ "compression_rate": 8,
59
+ "downsample_rate": 1,
60
+ "embedding_cls": "audio",
61
+ "enable_gradient_checkpointing": true,
62
+ "projection_cls": "mlp",
63
+ "use_conv_downsample": false,
64
+ "use_qformer": false
65
+ },
66
+ "embedding_cls": "image_audio",
67
+ "image_embd_layer": {
68
+ "crop_size": 448,
69
+ "embedding_cls": "tune_image",
70
+ "enable_gradient_checkpointing": true,
71
+ "hd_transform_order": "sub_glb",
72
+ "image_token_compression_cls": "avg_pool_2d",
73
+ "projection_cls": "mlp",
74
+ "use_hd_transform": true,
75
+ "with_learnable_separator": true
76
+ }
77
+ },
78
+ "eos_token_id": 151645,
79
+ "hidden_act": "silu",
80
+ "hidden_size": 896,
81
+ "initializer_range": 0.02,
82
+ "intermediate_size": 4864,
83
+ "max_position_embeddings": 131072,
84
+ "max_window_layers": 24,
85
+ "model_type": "qwen2-mm",
86
+ "num_attention_heads": 14,
87
+ "num_hidden_layers": 24,
88
+ "num_key_value_heads": 2,
89
+ "pad_token_id": 151643,
90
+ "rms_norm_eps": 1e-06,
91
+ "rope_scaling": null,
92
+ "rope_theta": 1000000.0,
93
+ "sliding_window": null,
94
+ "speech_lora": {
95
+ "dp": 0.01,
96
+ "layer": "((layers.*self_attn\\.(qkv|o)_proj)|(layers.*mlp\\.(gate_up|down)_proj))",
97
+ "lora_alpha": 640,
98
+ "r": 320
99
+ },
100
+ "tie_word_embeddings": true,
101
+ "torch_dtype": "bfloat16",
102
+ "transformers_version": "4.48.3",
103
+ "use_cache": false,
104
+ "use_sliding_window": false,
105
+ "vision_lora": {
106
+ "dp": 0.0,
107
+ "layer": "layers.*((self_attn\\.(qkv_proj|o_proj))|(mlp\\.(gate_up|down)_proj))",
108
+ "lora_alpha": 512,
109
+ "r": 256
110
+ },
111
+ "vocab_size": 194498
112
+ }
configuration_qwen2mm.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Qwen2 model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.modeling_rope_utils import rope_config_validation
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class Qwen2MMConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
28
+ Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
29
+ with the defaults will yield a similar configuration to that of
30
+ Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 151936):
38
+ Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`Qwen2Model`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 22016):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer encoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ num_key_value_heads (`int`, *optional*, defaults to 32):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
55
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
56
+ The non-linear activation function (function or string) in the decoder.
57
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
58
+ The maximum sequence length that this model might ever be used with.
59
+ initializer_range (`float`, *optional*, defaults to 0.02):
60
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
61
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
62
+ The epsilon used by the rms normalization layers.
63
+ use_cache (`bool`, *optional*, defaults to `True`):
64
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
65
+ relevant if `config.is_decoder=True`.
66
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
67
+ Whether the model's input and output word embeddings should be tied.
68
+ rope_theta (`float`, *optional*, defaults to 10000.0):
69
+ The base period of the RoPE embeddings.
70
+ rope_scaling (`Dict`, *optional*):
71
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
72
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
73
+ accordingly.
74
+ Expected contents:
75
+ `rope_type` (`str`):
76
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
77
+ 'llama3'], with 'default' being the original RoPE implementation.
78
+ `factor` (`float`, *optional*):
79
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
80
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
81
+ original maximum pre-trained length.
82
+ `original_max_position_embeddings` (`int`, *optional*):
83
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
84
+ pretraining.
85
+ `attention_factor` (`float`, *optional*):
86
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
87
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
88
+ `factor` field to infer the suggested value.
89
+ `beta_fast` (`float`, *optional*):
90
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
91
+ ramp function. If unspecified, it defaults to 32.
92
+ `beta_slow` (`float`, *optional*):
93
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
94
+ ramp function. If unspecified, it defaults to 1.
95
+ `short_factor` (`List[float]`, *optional*):
96
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
97
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
98
+ size divided by the number of attention heads divided by 2
99
+ `long_factor` (`List[float]`, *optional*):
100
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
101
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
102
+ size divided by the number of attention heads divided by 2
103
+ `low_freq_factor` (`float`, *optional*):
104
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
105
+ `high_freq_factor` (`float`, *optional*):
106
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
107
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
108
+ Whether to use sliding window attention.
109
+ sliding_window (`int`, *optional*, defaults to 4096):
110
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
111
+ max_window_layers (`int`, *optional*, defaults to 28):
112
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
113
+ attention_dropout (`float`, *optional*, defaults to 0.0):
114
+ The dropout ratio for the attention probabilities.
115
+
116
+ ```python
117
+ >>> from transformers import Qwen2Model, Qwen2Config
118
+
119
+ >>> # Initializing a Qwen2 style configuration
120
+ >>> configuration = Qwen2Config()
121
+
122
+ >>> # Initializing a model from the Qwen2-7B style configuration
123
+ >>> model = Qwen2Model(configuration)
124
+
125
+ >>> # Accessing the model configuration
126
+ >>> configuration = model.config
127
+ ```"""
128
+
129
+ model_type = "qwen2-mm"
130
+ keys_to_ignore_at_inference = ["past_key_values"]
131
+
132
+ # Default tensor parallel plan for base model `Qwen2`
133
+ base_model_tp_plan = {
134
+ "layers.*.self_attn.q_proj": "colwise",
135
+ "layers.*.self_attn.k_proj": "colwise",
136
+ "layers.*.self_attn.v_proj": "colwise",
137
+ "layers.*.self_attn.o_proj": "rowwise",
138
+ "layers.*.mlp.gate_proj": "colwise",
139
+ "layers.*.mlp.up_proj": "colwise",
140
+ "layers.*.mlp.down_proj": "rowwise",
141
+ }
142
+ base_model_pp_plan = {
143
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
144
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
145
+ "norm": (["hidden_states"], ["hidden_states"]),
146
+ }
147
+
148
+ def __init__(
149
+ self,
150
+ vocab_size=151936,
151
+ hidden_size=4096,
152
+ intermediate_size=22016,
153
+ num_hidden_layers=32,
154
+ num_attention_heads=32,
155
+ num_key_value_heads=32,
156
+ hidden_act="silu",
157
+ max_position_embeddings=32768,
158
+ initializer_range=0.02,
159
+ rms_norm_eps=1e-6,
160
+ use_cache=True,
161
+ tie_word_embeddings=False,
162
+ rope_theta=10000.0,
163
+ rope_scaling=None,
164
+ use_sliding_window=False,
165
+ sliding_window=4096,
166
+ max_window_layers=28,
167
+ attention_dropout=0.0,
168
+ **kwargs,
169
+ ):
170
+ self.vocab_size = vocab_size
171
+ self.max_position_embeddings = max_position_embeddings
172
+ self.hidden_size = hidden_size
173
+ self.intermediate_size = intermediate_size
174
+ self.num_hidden_layers = num_hidden_layers
175
+ self.num_attention_heads = num_attention_heads
176
+ self.use_sliding_window = use_sliding_window
177
+ self.sliding_window = sliding_window # we check `use_sliding_window` in the modeling code
178
+ self.max_window_layers = max_window_layers
179
+
180
+ # for backward compatibility
181
+ if num_key_value_heads is None:
182
+ num_key_value_heads = num_attention_heads
183
+
184
+ self.num_key_value_heads = num_key_value_heads
185
+ self.hidden_act = hidden_act
186
+ self.initializer_range = initializer_range
187
+ self.rms_norm_eps = rms_norm_eps
188
+ self.use_cache = use_cache
189
+ self.rope_theta = rope_theta
190
+ self.rope_scaling = rope_scaling
191
+ self.attention_dropout = attention_dropout
192
+ # Validate the correctness of rotary position embeddings parameters
193
+ # BC: if there is a 'type' field, move it to 'rope_type'.
194
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
195
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
196
+ rope_config_validation(self)
197
+
198
+ super().__init__(
199
+ tie_word_embeddings=tie_word_embeddings,
200
+ **kwargs,
201
+ )
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151644,
4
+ "eos_token_id": [
5
+ 151645
6
+ ],
7
+ "pad_token_id": 151643,
8
+ "transformers_version": "4.48.3"
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f642731b0bdfe6f3703ef4b208b6cdf17e0c47d2b2de1a99067ed633fca06ff
3
+ size 1950430024
modeling_phi4mm.py ADDED
@@ -0,0 +1,1877 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch Phi-4-MM model."""
17
+ import math
18
+ import warnings
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ import numpy as np
22
+
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import CrossEntropyLoss
27
+
28
+ from transformers.activations import ACT2FN
29
+ from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
30
+ from transformers.generation import GenerationMixin
31
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
32
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
33
+ from transformers.modeling_outputs import (
34
+ BaseModelOutputWithPast,
35
+ CausalLMOutputWithPast,
36
+ SequenceClassifierOutputWithPast,
37
+ TokenClassifierOutput,
38
+ )
39
+ from transformers.modeling_utils import PreTrainedModel
40
+ from transformers.utils import (
41
+ add_code_sample_docstrings,
42
+ add_start_docstrings,
43
+ add_start_docstrings_to_model_forward,
44
+ is_flash_attn_greater_or_equal_2_10,
45
+ logging,
46
+ replace_return_docstrings,
47
+ )
48
+ from transformers import AutoConfig, AutoModelForCausalLM, PretrainedConfig
49
+
50
+ # from .configuration_phi4mm import Phi4MMConfig
51
+ from .processing_phi4mm import InputMode
52
+ # from .vision_siglip_navit import get_siglip_vision_model
53
+ from .speech_conformer_encoder import ConformerEncoder
54
+
55
+
56
+ logger = logging.get_logger(__name__)
57
+
58
+ _CHECKPOINT_FOR_DOC = "TBA"
59
+ _CONFIG_FOR_DOC = "Qwen2MMConfig"
60
+
61
+ # Special token ids
62
+ _IMAGE_SPECIAL_TOKEN_ID = 1516444 # '<|endoftext10|>', or we can better name it (in `tokenizer_config.json`)
63
+ _AUDIO_SPECIAL_TOKEN_ID = 151644 # '<|endoftext11|>'
64
+ _COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE = [-9999, -1] # For backward compatibility
65
+ _COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE = [float('-inf'), -10000] # For backward compatibility
66
+
67
+
68
+ # class Phi4MMImageEmbedding(nn.Module):
69
+ # """Image embedding."""
70
+
71
+ # def __init__(self, config: PretrainedConfig, **kwargs) -> None:
72
+ # super().__init__()
73
+
74
+ # # n_embed or hidden_size
75
+ # hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
76
+ # if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
77
+ # embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
78
+ # self.drop = nn.Dropout(embd_drop)
79
+ # else:
80
+ # self.drop = None
81
+
82
+ # logger.info(f"create image tower {config.img_processor}")
83
+ # enable_gradient_checkpointing = kwargs.get('enable_gradient_checkpointing', False)
84
+
85
+ # # Load SigLIP model
86
+ # self.img_processor = get_siglip_vision_model(
87
+ # _flash_attn_2_enabled=config._attn_implementation == 'flash_attention_2'
88
+ # )
89
+
90
+ # pe_weight = self.img_processor.embeddings.position_embedding.weight
91
+ # L, D = pe_weight.size()
92
+ # H = int(math.sqrt(L))
93
+ # assert H**2 == L
94
+ # if H % 2 != 0: #and kwargs.get('image_token_compression_cls', None) is None:
95
+ # self.img_processor_padding = nn.ReflectionPad2d((0, 1, 0, 1))
96
+ # H += 1
97
+ # image_dim_out = D
98
+ # # ((448/14)//2)**2
99
+ # self.num_img_tokens = (H//2)**2
100
+ # self.base_feat_height_target = H
101
+
102
+ # if enable_gradient_checkpointing:
103
+ # self.img_processor.encoder.gradient_checkpointing = True
104
+
105
+ # self.image_dim_out = image_dim_out
106
+ # self.img_sizes = None
107
+ # self.image_attention_mask = None
108
+
109
+ # # global_gn and sub_gn for hd transform, serves as line separator
110
+ # self.use_hd_transform = kwargs.get('use_hd_transform', False)
111
+ # self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
112
+ # self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
113
+ # self.freeze_img_processor = kwargs.get('freeze_img_processor', False)
114
+ # self.crop_size = kwargs.get('crop_size', 336)
115
+ # logger.info(f'freeze_img_processor = {self.freeze_img_processor}')
116
+
117
+ # # image token compression
118
+ # self.image_token_compression_cls = kwargs.get('image_token_compression_cls', None)
119
+ # if self.image_token_compression_cls == 'avg_pool_2d':
120
+ # self.image_token_compression = nn.AvgPool2d(kernel_size=2, stride=2)
121
+ # self.base_feat_height_reduction = 1
122
+ # self.base_feat_height_target = self.base_feat_height_target // 2
123
+ # elif self.image_token_compression_cls is None:
124
+ # self.image_token_compression = None
125
+ # self.base_feat_height_reduction = 2
126
+ # else:
127
+ # raise NotImplementedError(f'image_token_compression_cls = {self.image_token_compression_cls}, not implemented')
128
+
129
+ # # with_hd_transform and with_learnable_separator should have same value
130
+ # assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
131
+ # if self.with_learnable_separator:
132
+ # assert self.use_hd_transform, 'learnable separator is only for hd transform'
133
+ # # 1024 * 4, merge spatial to channel dimension
134
+ # self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * self.base_feat_height_reduction**2]))
135
+ # self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * self.base_feat_height_reduction**2]))
136
+ # logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
137
+
138
+ # projection_cls = kwargs.get('projection_cls', 'linear')
139
+ # if projection_cls == 'linear':
140
+ # self.img_projection = nn.Linear(image_dim_out, hidden_size)
141
+ # elif projection_cls == 'mlp' and self.use_hd_transform:
142
+ # dim_projection = hidden_size
143
+ # depth = 2
144
+ # layers = [nn.Linear(image_dim_out * self.base_feat_height_reduction**2, dim_projection)]
145
+ # for _ in range(1, depth):
146
+ # layers.extend([nn.GELU(),
147
+ # nn.Linear(dim_projection, dim_projection)])
148
+ # self.img_projection = nn.Sequential(*layers)
149
+ # elif projection_cls == 'mlp':
150
+ # # follow llava-v1.5's implementation
151
+ # # (do not use image_projection and image_proj_norm)
152
+ # dim_projection = hidden_size
153
+ # depth = 2
154
+ # layers = [nn.Linear(image_dim_out, dim_projection)]
155
+ # for _ in range(1, depth):
156
+ # layers.extend([nn.GELU(),
157
+ # nn.Linear(dim_projection, dim_projection)])
158
+ # self.img_projection = nn.Sequential(*layers)
159
+ # else:
160
+ # raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
161
+
162
+ # self.vocab_size = config.vocab_size
163
+ # self.img_features = None
164
+
165
+ # if isinstance(config.img_processor, dict):
166
+ # self.layer_idx = config.img_processor.get('layer_idx', -2)
167
+ # self.type_feature = config.img_processor.get('type_feature', 'patch')
168
+ # else:
169
+ # self.layer_idx = -2
170
+ # self.type_feature = 'patch'
171
+
172
+ # def set_img_features(self, img_features: torch.FloatTensor) -> None:
173
+ # self.img_features = img_features
174
+
175
+ # def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
176
+ # self.img_sizes = img_sizes
177
+
178
+ # def set_img_attn_mask(self, image_attention_mask: torch.FloatTensor) -> None:
179
+ # self.image_attention_mask = image_attention_mask
180
+
181
+ # def get_img_features(self, img_embeds: torch.FloatTensor, attention_mask=None) -> torch.FloatTensor:
182
+ # LAYER_IDX = self.layer_idx
183
+ # TYPE_FEATURE = self.type_feature
184
+
185
+ # if self.freeze_img_processor:
186
+ # with torch.no_grad():
187
+ # if attention_mask is not None:
188
+ # img_processor_output = self.img_processor(img_embeds, output_hidden_states=True, patch_attention_mask=attention_mask)
189
+ # else:
190
+ # img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
191
+ # img_feature = img_processor_output.hidden_states[LAYER_IDX]
192
+ # else:
193
+ # if attention_mask is not None:
194
+ # img_processor_output = self.img_processor(img_embeds, output_hidden_states=True, patch_attention_mask=attention_mask)
195
+ # else:
196
+ # img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
197
+ # img_feature = img_processor_output.hidden_states[LAYER_IDX]
198
+
199
+ # if TYPE_FEATURE == "patch":
200
+ # patch_feature = img_feature
201
+ # if self.image_token_compression is not None:
202
+ # # reshape to 2D tensor
203
+ # width = int(math.sqrt(patch_feature.size(1)))
204
+ # patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1))
205
+ # # convert to NCHW
206
+ # patch_feature = patch_feature.permute(0, 3, 1, 2)
207
+ # if getattr(self, 'img_processor_padding', None) is not None:
208
+ # patch_feature = self.img_processor_padding(patch_feature)
209
+ # patch_feature = self.image_token_compression(patch_feature)
210
+ # # convert to NHWC
211
+ # patch_feature = patch_feature.permute(0, 2, 3, 1)
212
+ # patch_feature = patch_feature.view(-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1))
213
+ # elif getattr(self, 'img_processor_padding', None) is not None:
214
+ # width = int(math.sqrt(patch_feature.size(1)))
215
+ # patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1))
216
+ # # convert to NCHW
217
+ # patch_feature = patch_feature.permute(0, 3, 1, 2)
218
+ # patch_feature = self.img_processor_padding(patch_feature)
219
+ # # convert to NHWC
220
+ # patch_feature = patch_feature.permute(0, 2, 3, 1)
221
+ # patch_feature = patch_feature.view(-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1))
222
+ # return patch_feature
223
+
224
+ # if TYPE_FEATURE == "cls_patch":
225
+ # if self.image_token_compression is not None:
226
+ # # reshape to 2D tensor
227
+ # patch_feature = img_feature[:, 1:]
228
+ # cls_feature = img_feature[:, 0]
229
+ # width = math.sqrt(patch_feature.size(1))
230
+ # patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1))
231
+ # patch_feature = self.image_token_compression(patch_feature)
232
+ # patch_feature = patch_feature.view(-1, patch_feature.size(-2) * patch_feature.size(-1))
233
+ # img_feature = torch.cat([cls_feature, patch_feature], dim=1)
234
+ # return img_feature
235
+
236
+ # logger.info(f'processed img feature size = {img_feature.size()}')
237
+ # raise NotImplementedError
238
+
239
+ # def spatiotemporal_pool(self, x, num_img_tokens, batch_size=1, T=1):
240
+
241
+ # if self.image_pos_embed is not None:
242
+ # x = x.view(batch_size * T, -1, x.shape[-1])
243
+ # num_tokens = x.shape[-2]
244
+ # h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5)
245
+ # assert h * w == num_tokens, 'only support square feature maps for now'
246
+ # x = x.view(batch_size * T, h, w, x.shape[-1])
247
+ # pos_embed = self.image_pos_embed(x)
248
+ # x = x + pos_embed
249
+ # x = x.view(batch_size, T * h * w, x.shape[-1])
250
+
251
+ # if self.visual_temporal_embed is not None:
252
+ # visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
253
+ # x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1])
254
+
255
+ # new_x = []
256
+ # # [bsz, T * H' * W', C] -> [bsz, T, C]
257
+ # spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
258
+ # new_x.append(spatial_avg_pool_x)
259
+
260
+ # # [bsz, T * H' * W', C] -> [bsz, H'*W', C]
261
+ # temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1)
262
+ # new_x.append(temporal_avg_pool_x)
263
+
264
+ # x = torch.cat(new_x, dim=1).view(-1, self.image_dim_out)
265
+ # num_img_tokens += T
266
+ # return x, num_img_tokens
267
+
268
+ # def forward(self, input_ids: torch.LongTensor, input_embeds: torch.FloatTensor, image_sizes=None, **kwargs) -> torch.FloatTensor:
269
+
270
+ # if isinstance(input_ids, tuple):
271
+ # # # pipeline parallel
272
+ # input_ids, input_embeds = input_ids
273
+
274
+ # img_embeds = input_embeds
275
+ # if image_sizes is None and 'image_sizes' in kwargs:
276
+ # image_sizes = kwargs['image_sizes']
277
+ # img_sizes = image_sizes
278
+
279
+ # if self.img_features is not None:
280
+ # img_embeds = self.img_features.clone()
281
+ # self.img_features = None
282
+
283
+ # if self.img_sizes is not None:
284
+ # img_sizes = self.img_sizes
285
+
286
+ # dtype = self.img_processor.embeddings.patch_embedding.weight.dtype
287
+ # if img_embeds is not None:
288
+ # # convert to bf16
289
+ # img_embeds = img_embeds.to(dtype)
290
+
291
+ # if self.image_attention_mask is not None:
292
+ # image_attention_mask = self.image_attention_mask.clone()
293
+ # self.image_attention_mask = None
294
+ # elif 'image_attention_mask' in kwargs:
295
+ # image_attention_mask = kwargs['image_attention_mask']
296
+ # else:
297
+ # image_attention_mask = None
298
+ # input_shape = input_ids.size()
299
+ # input_ids = input_ids.view(-1, input_shape[-1])
300
+
301
+ # with torch.no_grad():
302
+ # positions = torch.nonzero(input_ids == _IMAGE_SPECIAL_TOKEN_ID, as_tuple=False)
303
+ # positions_tuple = torch.nonzero(input_ids == _IMAGE_SPECIAL_TOKEN_ID, as_tuple=True)
304
+
305
+ # # logger.info(f'position size: {positions.size()} ...')
306
+ # fake_image_forward = False
307
+ # select = False
308
+ # hd_transform = False
309
+
310
+ # if isinstance(self.img_projection, nn.Sequential):
311
+ # target_device = self.img_projection[0].bias.device
312
+ # target_dtype = self.img_projection[0].bias.dtype
313
+ # else: # It's a single nn.Linear layer
314
+ # target_device = self.img_projection.bias.device
315
+ # target_dtype = self.img_projection.bias.dtype
316
+
317
+ # num_img_tokens = self.num_img_tokens
318
+ # if len(positions.tolist()) > 0:
319
+ # if self.use_hd_transform and img_sizes is not None and len(img_sizes):
320
+ # hd_transform = True
321
+ # assert img_embeds.ndim == 5, f'(branch 1) img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform'
322
+ # # img_embeds: (num_images, max_num_crops, 3, H, W)
323
+ # # img_sizes: (num_images, 2).view(1, -1)
324
+
325
+ # bs = img_embeds.shape[0]
326
+ # # Nx(HW)xC
327
+ # if image_attention_mask is not None and len(image_attention_mask) > 0:
328
+ # img_features = self.get_img_features(img_embeds.flatten(0, 1), attention_mask=image_attention_mask.type(torch.BoolTensor).flatten(0,1).to(target_device))
329
+ # else:
330
+ # img_features = self.get_img_features(img_embeds.flatten(0, 1))
331
+
332
+ # base_feat_height_target = self.base_feat_height_target
333
+ # base_resolution = self.crop_size
334
+ # base_feat_height_reduction = self.base_feat_height_reduction
335
+
336
+ # base_feat_height = base_feat_width = int(np.sqrt(img_features.shape[1]))
337
+
338
+ # assert base_feat_height == base_feat_height_target and base_feat_width == base_feat_height_target, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect {base_feat_height_target} features for hd transform'
339
+
340
+ # # bs x max_num_crops x (24x24) x C
341
+ # img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out)
342
+ # C = self.image_dim_out
343
+ # H = base_feat_height
344
+
345
+ # output_imgs = []
346
+ # output_len = []
347
+ # # training is tensor, inference is list
348
+ # if isinstance(img_sizes, torch.Tensor):
349
+ # img_sizes = img_sizes.view(-1, 2)
350
+ # for _bs in range(bs):
351
+ # h, w = img_sizes[_bs]
352
+ # h = h // base_resolution
353
+ # w = w // base_resolution
354
+ # B_ = h * w
355
+
356
+ # # 1 x (24x24) x 1024
357
+ # global_img_feature = img_features[_bs, :1]
358
+
359
+ # # 1 x 12 x 12 x 4096
360
+ # glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//base_feat_height_reduction,base_feat_height_reduction,H//base_feat_height_reduction,base_feat_height_reduction,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//base_feat_height_reduction,H//base_feat_height_reduction,base_feat_height_reduction*base_feat_height_reduction*C).contiguous()
361
+ # temp_glb_GN = self.sub_GN.repeat(1, H//base_feat_height_reduction, 1, 1)
362
+
363
+ # # 1 x 156 x 4096
364
+ # glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,base_feat_height_reduction*base_feat_height_reduction*C)
365
+
366
+ # # (max_num_crops-1) x (12x12) x C
367
+ # sub_img = img_features[_bs, 1:]
368
+ # # 16x574x1024
369
+ # # get rid of padding sub_img
370
+ # sub_img = sub_img[:B_]
371
+
372
+ # # (num_crops, 12, 2, 12, 2, 1024) -> (num_crops, 12, 12, 2, 2, 1024) -> (num_crops, 12*12, 4*1024)
373
+ # sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//base_feat_height_reduction,base_feat_height_reduction,H//base_feat_height_reduction,base_feat_height_reduction,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,base_feat_height_reduction*base_feat_height_reduction*C).contiguous()
374
+ # sub_img = sub_img.reshape(1, h, w, base_feat_height // base_feat_height_reduction, base_feat_width // base_feat_height_reduction, -1).permute(0,1,3,2,4,5).reshape(1,h*base_feat_height//base_feat_height_reduction,w*base_feat_width//base_feat_height_reduction,base_feat_height_reduction*base_feat_height_reduction*C)
375
+
376
+ # if image_attention_mask is not None and len(image_attention_mask) > 0:
377
+ # reshaped_image_attention_mask = image_attention_mask[_bs,1:B_+1,0::2,0::2].reshape(1, h, w, base_feat_height // base_feat_height_reduction, base_feat_width // base_feat_height_reduction).permute(0,1,3,2,4).reshape(1,h*base_feat_height//base_feat_height_reduction,w*base_feat_width//base_feat_height_reduction)
378
+ # useful_height = int(reshaped_image_attention_mask[0,:,0].sum().item())
379
+ # useful_width = int(reshaped_image_attention_mask[0,0,:].sum().item())
380
+ # sub_img = sub_img[:,:useful_height, :useful_width]
381
+ # temp_sub_GN = self.sub_GN.repeat(1, useful_height, 1, 1)
382
+ # temp_len = int(image_attention_mask[_bs,:B_+1,0::2,0::2].sum().item()) + (useful_height+1) + base_feat_height//base_feat_height_reduction
383
+ # else:
384
+ # temp_sub_GN = self.sub_GN.repeat(1, h*base_feat_height//base_feat_height_reduction, 1, 1)
385
+ # temp_len = int((h*w+1)*self.num_img_tokens+ 1 + (h+1)*base_feat_height//base_feat_height_reduction)
386
+
387
+ # sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,base_feat_height_reduction*base_feat_height_reduction*C)
388
+ # # (1, num_img_tokens, 1024*4)
389
+
390
+ # # glb + sub
391
+ # if self.hd_transform_order == 'glb_sub':
392
+ # output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1))
393
+ # elif self.hd_transform_order == 'sub_glb':
394
+ # output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1))
395
+ # else:
396
+ # raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented')
397
+
398
+ # #temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
399
+ # assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}'
400
+ # output_len.append(temp_len)
401
+
402
+ # num_img_tokens = output_len
403
+ # img_set_tensor = []
404
+ # for _output_img in output_imgs:
405
+ # img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype))
406
+ # img_set_tensor.append(img_feature_proj)
407
+ # #logger.info(f'img_embeds size: {img_embeds.size()}, image sizes: {img_sizes} loading time {datetime.now() - start_time}')
408
+ # #assert sum(num_img_tokens) == len(g_values), f'(branch 1) sum(num_img_tokens): {sum(num_img_tokens)}, g_values size: {len(g_values)}, g_values {g_values}'
409
+
410
+ # else:
411
+ # raise NotImplementedError
412
+ # select = True
413
+ # else:
414
+ # # # create a fake image tensor
415
+ # # # TODO: need define image size for different vision model
416
+ # if self.training:
417
+ # img_embeds = torch.zeros(1, 3, self.crop_size, self.crop_size, dtype=target_dtype, device=input_ids.device)
418
+
419
+ # tt = (
420
+ # self.get_img_features(img_embeds)
421
+ # .to(target_device)
422
+ # .to(target_dtype)
423
+ # .reshape(-1, 1024)
424
+ # )
425
+ # if self.use_hd_transform:
426
+ # img_set_tensor = self.img_projection(tt.reshape(-1, self.image_dim_out*self.base_feat_height_reduction**2) * self.glb_GN[0] * self.sub_GN[0, 0])
427
+ # else:
428
+ # img_set_tensor = self.img_projection(tt) # adapted visual features.
429
+ # fake_image_forward = True
430
+
431
+ # # we use the token embedding layer from the huggingface model, this is REQUIRED to make sure we are using the loaded weights.
432
+ # hidden_states = kwargs['wte'](input_ids)
433
+
434
+ # if select:
435
+ # if hd_transform:
436
+ # # new implementation without in-place operation
437
+ # # Ref: https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/4a0d683eba9f1d0cbfb6151705d1ee73c25a80ca/modeling_phi3_v.py#L233
438
+ # # Ref: https://pytorch.org/docs/stable/generated/torch.Tensor.index_put.html
439
+ # # Ref: https://pytorch.org/docs/stable/generated/torch.Tensor.index_put_.html#torch.Tensor.index_put_
440
+ # # img_set_tensor: a list of tensors, each tensor has shape (1, N_tokens, C)
441
+ # assert all([_img_set_tensor.shape[0] == 1 for _img_set_tensor in img_set_tensor]), 'img_set_tensor should have shape (1, N_tokens, C)'
442
+ # # Shape: (merged_N_tokens, C)
443
+ # merged_img_set_tensor = torch.cat(img_set_tensor, dim=1).squeeze(0)
444
+ # merged_img_set_tensor = merged_img_set_tensor.to(hidden_states.dtype).to(hidden_states.device)
445
+ # # Temporarily disable autocast to avoid issue on bf16 tensors
446
+ # # Ref: https://github.com/pytorch/pytorch/issues/132715
447
+ # with torch.autocast(device_type=hidden_states.device.type, enabled=False):
448
+ # new_hidden_states = hidden_states.index_put(
449
+ # indices=positions_tuple,
450
+ # values=merged_img_set_tensor,
451
+ # accumulate=False
452
+ # )
453
+ # hidden_states = new_hidden_states
454
+ # else:
455
+ # raise NotImplementedError
456
+
457
+ # if fake_image_forward and self.training:
458
+ # hidden_states = hidden_states + (0 * img_set_tensor[0].to(hidden_states.dtype).to(hidden_states.device)).sum()
459
+
460
+ # if self.drop is not None:
461
+ # hidden_states = self.drop(hidden_states)
462
+
463
+ # return hidden_states
464
+
465
+
466
+ class Phi4MMAudioEmbedding(nn.Module):
467
+ """Audio embedding."""
468
+
469
+ def __init__(self, config: PretrainedConfig, **kwargs) -> None:
470
+ super().__init__()
471
+ self.config = config
472
+ # n_embed or hidden_size for text LM
473
+ hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
474
+
475
+ if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
476
+ embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
477
+ self.drop = nn.Dropout(embd_drop)
478
+ else:
479
+ self.drop = None
480
+
481
+ audio_dim_out = None # Set this variable according to the actual audio processor
482
+ logger.info(f"create audio processor {config.audio_processor}")
483
+ self.layer_idx = -2
484
+
485
+ if isinstance(config.audio_processor, dict) and config.audio_processor.get('name', None) == "cascades":
486
+ encoder_config = config.audio_processor.get("config", None)
487
+ assert encoder_config is not None
488
+ self.encoder = ConformerEncoder(**encoder_config)
489
+
490
+ # fake initialization, create encoder_embedding layer only so that
491
+ # in decoding, all parameters can be loaded in from_pretrained_function
492
+ # in training, we do post init after from_pretrained function to make sure the correct initialization
493
+ self.encoder.post_init({})
494
+
495
+ audio_dim_out = encoder_config["attention_dim"]
496
+ n_mels = encoder_config["input_size"]
497
+ else:
498
+ raise NotImplementedError
499
+
500
+ assert audio_dim_out is not None, "Remember to set values for audio_dim_out"
501
+ self.audio_dim_out = audio_dim_out
502
+ self.audio_dim_in = n_mels
503
+
504
+ self.freeze_audio_processor = kwargs.get('freeze_audio_processor', False)
505
+ logger.info(f'freeze_audio_processor = {self.freeze_audio_processor}')
506
+
507
+ self.downsample_rate = kwargs.get('downsample_rate', 1)
508
+
509
+ enable_gradient_checkpointing = kwargs.get('enable_gradient_checkpointing', False)
510
+ if enable_gradient_checkpointing:
511
+ self.encoder.gradient_checkpointing_enable()
512
+ logger.info(f'gradient checkpointing enabled for audio processor')
513
+
514
+ projection_cls = kwargs.get('projection_cls', 'linear')
515
+ if projection_cls == 'linear':
516
+ self.audio_projection = nn.Linear(audio_dim_out, hidden_size)
517
+ elif projection_cls == 'mlp':
518
+ # follow llava-v1.5's implementation
519
+ # (do not use image_projection and image_proj_norm)
520
+ dim_projection = hidden_size
521
+ depth = 2
522
+ self.linear_downsample_rate = self.downsample_rate
523
+
524
+ layers_for_speech = [nn.Linear(audio_dim_out * self.linear_downsample_rate, dim_projection)]
525
+ for _ in range(1, depth):
526
+ layers_for_speech.extend([nn.GELU(), nn.Linear(dim_projection, dim_projection)])
527
+ audio_projection_for_speech = nn.Sequential(*layers_for_speech)
528
+
529
+ layers_for_vision = [nn.Linear(audio_dim_out * self.linear_downsample_rate, dim_projection)]
530
+ for _ in range(1, depth):
531
+ layers_for_vision.extend([nn.GELU(), nn.Linear(dim_projection, dim_projection)])
532
+ # audio_projection_for_vision = nn.Sequential(*layers_for_vision)
533
+
534
+ self.audio_projection = nn.ModuleDict({
535
+ 'speech': audio_projection_for_speech #,
536
+ # 'vision': audio_projection_for_vision
537
+ })
538
+ else:
539
+ raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
540
+
541
+ self.vocab_size = config.vocab_size
542
+ self.input_embeds = None
543
+ self.audio_embed_sizes = None
544
+
545
+ def post_init(self, audio_config):
546
+ # execute after the from_pretrained() initialization of the phi4mm model
547
+ if audio_config.get('name', None) == "cascades":
548
+ init_model_config = audio_config.get("init_model", {})
549
+ self.encoder.post_init(init_model_config)
550
+ # remove the init model in config so it is not saved in the config.
551
+ # This might affect the model loading in resuming training and decoding.
552
+ if "init_model" in audio_config:
553
+ audio_config.pop("init_model")
554
+
555
+ def set_audio_embeds(self, input_embeds: torch.FloatTensor) -> None:
556
+ self.input_embeds = input_embeds
557
+
558
+ def set_audio_embed_sizes(self, audio_embed_sizes: torch.LongTensor) -> None:
559
+ self.audio_embed_sizes = audio_embed_sizes
560
+
561
+ def get_audio_features(self, input_embeds: torch.FloatTensor, audio_attention_mask: torch.Tensor, audio_projection_mode: str='speech'):
562
+
563
+ if self.freeze_audio_processor:
564
+ with torch.no_grad():
565
+ audio_features, masks = self.encoder(input_embeds, audio_attention_mask)
566
+ else:
567
+ audio_features, masks = self.encoder(input_embeds, audio_attention_mask)
568
+
569
+ if isinstance(self.audio_projection, nn.Sequential):
570
+ audio_set_tensor = self.audio_projection(audio_features)
571
+ elif isinstance(self.audio_projection, nn.ModuleDict):
572
+ audio_set_tensor = self.audio_projection[audio_projection_mode](audio_features)
573
+ else:
574
+ raise NotImplementedError
575
+
576
+ return audio_set_tensor
577
+
578
+ def forward(self, input_ids: torch.LongTensor, input_embeds: torch.FloatTensor, audio_embed_sizes=None, audio_attention_mask=None, audio_projection_mode='speech', **kwargs) -> torch.FloatTensor:
579
+ '''
580
+ arguments:
581
+ input_ids: input text ids (B, U)
582
+ input_embeds: audio features (B, T, D) B: num audios in a sequence
583
+ '''
584
+
585
+ if self.input_embeds is not None:
586
+ input_embeds = self.input_embeds.clone()
587
+ if self.audio_embed_sizes is not None:
588
+ audio_embed_sizes = self.audio_embed_sizes.clone()
589
+
590
+ input_shape = input_ids.size()
591
+ input_ids = input_ids.view(-1, input_shape[-1])
592
+ MAX_INPUT_ID = int(1e9)
593
+
594
+ with torch.no_grad():
595
+ positions = torch.nonzero(input_ids == _AUDIO_SPECIAL_TOKEN_ID, as_tuple=False)
596
+ positions_tuple = torch.nonzero(input_ids == _AUDIO_SPECIAL_TOKEN_ID, as_tuple=True)
597
+
598
+ if isinstance(self.audio_projection, nn.Sequential):
599
+ target_device = self.audio_projection[0].bias.device
600
+ target_dtype = self.audio_projection[0].bias.dtype
601
+ elif isinstance(self.audio_projection, nn.ModuleDict):
602
+ target_device = self.audio_projection[audio_projection_mode][0].bias.device
603
+ target_dtype = self.audio_projection[audio_projection_mode][0].bias.dtype
604
+ else: # It's a single nn.Linear layer
605
+ target_device = self.audio_projection.bias.device
606
+ target_dtype = self.audio_projection.bias.dtype
607
+
608
+ if input_embeds is not None:
609
+ input_embeds = input_embeds.to(target_device).to(target_dtype)
610
+
611
+
612
+
613
+ if len(positions.tolist()) > 0:
614
+ audio_set_tensor = self.get_audio_features(input_embeds, audio_attention_mask, audio_projection_mode)
615
+ else:
616
+ # # create an audio tensor
617
+ # To do: not sure if this is required for text only input
618
+ if self.training:
619
+ audio_embeds = torch.zeros(1, 500, self.audio_dim_in).to(target_device).to(target_dtype)
620
+ audio_attention_mask = audio_embeds.new_ones(audio_embeds.size()[:2]).long()
621
+ audio_set_tensor = self.get_audio_features(audio_embeds, audio_attention_mask, audio_projection_mode)
622
+
623
+ # print(kwargs['wte'])
624
+ # print(input_ids)
625
+ # print(kwargs['wte'](input_ids))
626
+ # print(audio_embed_sizes)
627
+ # print(len(positions.tolist()))
628
+ # print(audio_set_tensor)
629
+ # print(pppp)
630
+
631
+ hidden_states = kwargs['wte'](input_ids)
632
+
633
+
634
+ if len(positions.tolist()) > 0:
635
+
636
+ assert audio_embed_sizes.sum().item() == len(positions), \
637
+ f"please ensure the encoder outputs have the same length as defined in input_ids! \n audio_embed_sizes.sum().item(): {audio_embed_sizes.sum().item()} \n len(positions): {len(positions)} \n audio_embed_sizes: {audio_embed_sizes} \n positions: {positions} \n input_ids.shape \n {input_ids.shape}"
638
+
639
+ # new implementation without in-place operation
640
+ # Ref: https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/4a0d683eba9f1d0cbfb6151705d1ee73c25a80ca/modeling_phi3_v.py#L233
641
+ # Ref: https://pytorch.org/docs/stable/generated/torch.Tensor.index_put.html
642
+ # Ref: https://pytorch.org/docs/stable/generated/torch.Tensor.index_put_.html#torch.Tensor.index_put_
643
+ # audio_set_tensor: shape (N_audios, N_padded_tokens, C)
644
+ # Shape: (merged_N_tokens, C)
645
+
646
+
647
+
648
+ merged_audio_set_tensor = torch.cat([
649
+ audio_set_tensor[i, :audio_embed_sizes[i], :]
650
+ for i in range(len(audio_embed_sizes))
651
+ ], dim=0)
652
+ merged_audio_set_tensor = merged_audio_set_tensor.to(hidden_states.dtype).to(hidden_states.device)
653
+ # Temporarily disable autocast to avoid issue on bf16 tensors
654
+ # Ref: https://github.com/pytorch/pytorch/issues/132715
655
+ with torch.autocast(device_type=hidden_states.device.type, enabled=False):
656
+ new_hidden_states = hidden_states.index_put(
657
+ indices=positions_tuple,
658
+ values=merged_audio_set_tensor,
659
+ accumulate=False
660
+ )
661
+ hidden_states = new_hidden_states
662
+ else:
663
+ if self.training:
664
+ hidden_states = hidden_states + (0 * audio_set_tensor[:,0].to(hidden_states.dtype).to(hidden_states.device)).sum()
665
+
666
+ if self.drop is not None:
667
+ hidden_states = self.drop(hidden_states)
668
+
669
+ return hidden_states
670
+
671
+
672
+
673
+ class Phi4MMImageAudioEmbedding(nn.Module):
674
+ """Image-audio embedding."""
675
+
676
+ def __init__(self, config: PretrainedConfig, **kwargs) -> None:
677
+ super().__init__()
678
+
679
+ self.vocab_size = config.vocab_size
680
+
681
+ # self.image_input_id = kwargs.get('image_input_id', -1)
682
+ self.audio_input_id = kwargs.get('audio_input_id', -10000)
683
+ # assert self.image_input_id != self.audio_input_id, 'image_input_id and audio_input_id should be different'
684
+
685
+
686
+ # self.image_embd_layer_kwargs = kwargs['image_embd_layer']
687
+ # self.image_embed = Phi4MMImageEmbedding(config, **self.image_embd_layer_kwargs)
688
+ self.audio_embd_layer_kwargs = kwargs['audio_embd_layer']
689
+ self.audio_embed = Phi4MMAudioEmbedding(config, **self.audio_embd_layer_kwargs)
690
+
691
+ # self.input_image_embeds = None
692
+ # self.image_sizes = None
693
+ # self.image_attention_mask = None
694
+ self.input_audio_embeds = None
695
+ self.audio_embed_sizes = None
696
+
697
+ def post_init(self, audio_config):
698
+ # post init for audio embedding
699
+ # ref: model.model.embed_tokens_extend.post_init(audio_config) in phyagi/getters/model.py
700
+ self.audio_embed.post_init(audio_config)
701
+
702
+ # def set_input_image_embeds(self, input_image_embeds: torch.FloatTensor) -> None:
703
+ # self.input_image_embeds = input_image_embeds
704
+
705
+ # def set_image_sizes(self, image_sizes: torch.LongTensor) -> None:
706
+ # self.image_sizes = image_sizes
707
+
708
+ # def set_img_attn_mask(self, image_attention_mask: torch.FloatTensor) -> None:
709
+ # self.image_attention_mask = image_attention_mask
710
+
711
+ def set_input_audio_embeds(self, input_audio_embeds: torch.FloatTensor) -> None:
712
+ self.input_audio_embeds = input_audio_embeds
713
+
714
+ def set_audio_embed_sizes(self, audio_embed_sizes: torch.LongTensor) -> None:
715
+ self.audio_embed_sizes = audio_embed_sizes
716
+
717
+ def forward(
718
+ self,
719
+ input_ids: torch.LongTensor,
720
+ input_embeds,
721
+ input_image_embeds: Optional[torch.FloatTensor]=None,
722
+ input_audio_embeds: Optional[torch.FloatTensor]=None,
723
+ image_sizes=None,
724
+ image_attention_mask=None,
725
+ audio_embed_sizes=None,
726
+ audio_attention_mask=None,
727
+ audio_projection_mode='speech',
728
+ wte=None,
729
+ ) -> torch.FloatTensor:
730
+
731
+ MAX_INPUT_ID = int(1e9)
732
+ assert -MAX_INPUT_ID < self.audio_input_id #< self.image_input_id
733
+
734
+ # override image and audio embeddings and sizes from object itself
735
+ # this is for inference
736
+ # ref: phyagi/eval/utils/text_generation_vision_audio_pipeline.py
737
+ # if self.input_image_embeds is not None:
738
+ # assert input_image_embeds is None
739
+ # input_image_embeds = self.input_image_embeds.clone()
740
+ # # NOTE weijian: set input_image_embeds to None after first call in for eval stage
741
+ # # during evaluation, it will call model's forward() multiple times
742
+ # # the first time input_ids contains the prompt (including <|image_{}|>) and input_embeds exists
743
+ # # from the second time, the input_ids will only contain the generated text
744
+ # # thus, the input_image_embeds is no longer needed
745
+ # self.input_image_embeds = None
746
+
747
+ # if self.image_sizes is not None:
748
+ # assert image_sizes is None
749
+ # image_sizes = self.image_sizes
750
+
751
+ if self.input_audio_embeds is not None:
752
+ assert input_audio_embeds is None
753
+ input_audio_embeds = self.input_audio_embeds.clone()
754
+ self.input_audio_embeds = None
755
+
756
+ if self.audio_embed_sizes is not None:
757
+ assert audio_embed_sizes is None
758
+ audio_embed_sizes = self.audio_embed_sizes.clone()
759
+
760
+ # if self.image_attention_mask is not None:
761
+ # assert image_attention_mask is None
762
+ # image_attention_mask = self.image_attention_mask.clone()
763
+ # self.image_attention_mask = None
764
+
765
+ input_shape = input_ids.size()
766
+ input_ids = input_ids.view(-1, input_shape[-1])
767
+
768
+ # backward compatibility
769
+ with torch.no_grad():
770
+ new_input_ids = input_ids.clone()
771
+ # new_input_ids[(input_ids >= _COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE[0]) &
772
+ # (input_ids <= _COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE[1])] = _IMAGE_SPECIAL_TOKEN_ID
773
+ new_input_ids[(input_ids >= _COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE[0]) &
774
+ (input_ids <= _COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE[1])] = _AUDIO_SPECIAL_TOKEN_ID
775
+ input_ids = new_input_ids
776
+
777
+ # with torch.no_grad():
778
+ # image_position_mask = input_ids == _IMAGE_SPECIAL_TOKEN_ID
779
+ # non_image_position_mask = ~image_position_mask
780
+
781
+ assert input_embeds is None
782
+ # if self.training:
783
+ # assert input_image_embeds is not None or input_audio_embeds is not None
784
+ if self.training:
785
+ assert input_audio_embeds is not None
786
+
787
+ # if input_image_embeds is not None:
788
+ # image_hidden_states = self.image_embed(
789
+ # input_ids=input_ids,
790
+ # input_embeds=input_image_embeds,
791
+ # image_sizes=image_sizes,
792
+ # wte=wte,
793
+ # image_attention_mask=image_attention_mask
794
+ # )
795
+
796
+
797
+ if input_audio_embeds is not None:
798
+ audio_hidden_states = self.audio_embed(
799
+ input_ids=input_ids,
800
+ input_embeds=input_audio_embeds,
801
+ audio_embed_sizes=audio_embed_sizes,
802
+ audio_attention_mask=audio_attention_mask,
803
+ wte=wte,
804
+ audio_projection_mode=audio_projection_mode,
805
+ )
806
+
807
+ # merge image and audio hidden states
808
+ # NOTE weijian: for non-image-audio tokens, here we use audio hidden states
809
+ # actually, in the debug code above, the non-image-audio tokens from image_hidden_states and audio_hidden_states should be the same
810
+ # if input_image_embeds is not None and input_audio_embeds is not None:
811
+ # dtype = image_hidden_states.dtype
812
+ # hidden_states = image_hidden_states * image_position_mask.to(dtype).unsqueeze(-1) + audio_hidden_states * non_image_position_mask.to(dtype).unsqueeze(-1)
813
+ # elif input_image_embeds is not None:
814
+ # hidden_states = image_hidden_states
815
+ # elif input_audio_embeds is not None:
816
+ if input_audio_embeds is not None:
817
+ hidden_states = audio_hidden_states
818
+ else:
819
+ assert wte is not None
820
+ hidden_states = wte(input_ids)
821
+
822
+ return hidden_states
823
+
824
+
825
+ ########################################################################################################################
826
+
827
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
828
+ # This file was automatically generated from src/transformers/models/qwen2/modular_qwen2.py.
829
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
830
+ # the file from the modular. If any change should be done, please apply the change to the
831
+ # modular_qwen2.py file directly. One of our CI enforces this.
832
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
833
+ from typing import Callable, List, Optional, Tuple, Union
834
+
835
+ import torch
836
+ from torch import nn
837
+
838
+ from transformers.activations import ACT2FN
839
+ from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
840
+ from transformers.generation import GenerationMixin
841
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
842
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
843
+ from transformers.modeling_outputs import (
844
+ BaseModelOutputWithPast,
845
+ CausalLMOutputWithPast,
846
+ QuestionAnsweringModelOutput,
847
+ SequenceClassifierOutputWithPast,
848
+ TokenClassifierOutput,
849
+ )
850
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
851
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
852
+ from transformers.processing_utils import Unpack
853
+ from transformers.utils import (
854
+ LossKwargs,
855
+ add_code_sample_docstrings,
856
+ add_start_docstrings,
857
+ add_start_docstrings_to_model_forward,
858
+ logging,
859
+ replace_return_docstrings,
860
+ )
861
+ from transformers.utils.deprecation import deprecate_kwarg
862
+ from .configuration_qwen2mm import Qwen2MMConfig
863
+
864
+
865
+ ####################################################################
866
+
867
+
868
+ logger = logging.get_logger(__name__)
869
+
870
+ _CHECKPOINT_FOR_DOC = "meta-qwen2/Qwen2-2-7b-hf"
871
+ _CONFIG_FOR_DOC = "Qwen2MMConfig"
872
+
873
+
874
+ class Qwen2MLP(nn.Module):
875
+ def __init__(self, config):
876
+ super().__init__()
877
+ self.config = config
878
+ self.hidden_size = config.hidden_size
879
+ self.intermediate_size = config.intermediate_size
880
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
881
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
882
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
883
+ self.act_fn = ACT2FN[config.hidden_act]
884
+
885
+ def forward(self, x):
886
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
887
+ return down_proj
888
+
889
+
890
+ def rotate_half(x):
891
+ """Rotates half the hidden dims of the input."""
892
+ x1 = x[..., : x.shape[-1] // 2]
893
+ x2 = x[..., x.shape[-1] // 2 :]
894
+ return torch.cat((-x2, x1), dim=-1)
895
+
896
+
897
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
898
+ """Applies Rotary Position Embedding to the query and key tensors.
899
+
900
+ Args:
901
+ q (`torch.Tensor`): The query tensor.
902
+ k (`torch.Tensor`): The key tensor.
903
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
904
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
905
+ position_ids (`torch.Tensor`, *optional*):
906
+ Deprecated and unused.
907
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
908
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
909
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
910
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
911
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
912
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
913
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
914
+ Returns:
915
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
916
+ """
917
+ cos = cos.unsqueeze(unsqueeze_dim)
918
+ sin = sin.unsqueeze(unsqueeze_dim)
919
+ q_embed = (q * cos) + (rotate_half(q) * sin)
920
+ k_embed = (k * cos) + (rotate_half(k) * sin)
921
+ return q_embed, k_embed
922
+
923
+
924
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
925
+ """
926
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
927
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
928
+ """
929
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
930
+ if n_rep == 1:
931
+ return hidden_states
932
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
933
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
934
+
935
+
936
+ def eager_attention_forward(
937
+ module: nn.Module,
938
+ query: torch.Tensor,
939
+ key: torch.Tensor,
940
+ value: torch.Tensor,
941
+ attention_mask: Optional[torch.Tensor],
942
+ scaling: float,
943
+ dropout: float = 0.0,
944
+ **kwargs,
945
+ ):
946
+ key_states = repeat_kv(key, module.num_key_value_groups)
947
+ value_states = repeat_kv(value, module.num_key_value_groups)
948
+
949
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
950
+ if attention_mask is not None:
951
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
952
+ attn_weights = attn_weights + causal_mask
953
+
954
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
955
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
956
+ attn_output = torch.matmul(attn_weights, value_states)
957
+ attn_output = attn_output.transpose(1, 2).contiguous()
958
+
959
+ return attn_output, attn_weights
960
+
961
+
962
+ class Qwen2Attention(nn.Module):
963
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
964
+
965
+ def __init__(self, config: Qwen2MMConfig, layer_idx: int):
966
+ super().__init__()
967
+ self.config = config
968
+ self.layer_idx = layer_idx
969
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
970
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
971
+ self.scaling = self.head_dim**-0.5
972
+ self.attention_dropout = config.attention_dropout
973
+ self.is_causal = True
974
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
975
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
976
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
977
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
978
+
979
+ def forward(
980
+ self,
981
+ hidden_states: torch.Tensor,
982
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
983
+ attention_mask: Optional[torch.Tensor],
984
+ past_key_value: Optional[Cache] = None,
985
+ cache_position: Optional[torch.LongTensor] = None,
986
+ **kwargs: Unpack[FlashAttentionKwargs],
987
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
988
+ input_shape = hidden_states.shape[:-1]
989
+ hidden_shape = (*input_shape, -1, self.head_dim)
990
+
991
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
992
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
993
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
994
+
995
+ cos, sin = position_embeddings
996
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
997
+
998
+ if past_key_value is not None:
999
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
1000
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
1001
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
1002
+
1003
+ sliding_window = None
1004
+ if (
1005
+ self.config.use_sliding_window
1006
+ and getattr(self.config, "sliding_window", None) is not None
1007
+ and self.layer_idx >= self.config.max_window_layers
1008
+ ):
1009
+ sliding_window = self.config.sliding_window
1010
+
1011
+ attention_interface: Callable = eager_attention_forward
1012
+ if self.config._attn_implementation != "eager":
1013
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
1014
+ logger.warning_once(
1015
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
1016
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
1017
+ )
1018
+ else:
1019
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
1020
+
1021
+ attn_output, attn_weights = attention_interface(
1022
+ self,
1023
+ query_states,
1024
+ key_states,
1025
+ value_states,
1026
+ attention_mask,
1027
+ dropout=0.0 if not self.training else self.attention_dropout,
1028
+ scaling=self.scaling,
1029
+ sliding_window=sliding_window, # main diff with Llama
1030
+ **kwargs,
1031
+ )
1032
+
1033
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
1034
+ attn_output = self.o_proj(attn_output)
1035
+ return attn_output, attn_weights
1036
+
1037
+
1038
+ class Qwen2RMSNorm(nn.Module):
1039
+ def __init__(self, hidden_size, eps=1e-6):
1040
+ """
1041
+ Qwen2RMSNorm is equivalent to T5LayerNorm
1042
+ """
1043
+ super().__init__()
1044
+ self.weight = nn.Parameter(torch.ones(hidden_size))
1045
+ self.variance_epsilon = eps
1046
+
1047
+ def forward(self, hidden_states):
1048
+ input_dtype = hidden_states.dtype
1049
+ hidden_states = hidden_states.to(torch.float32)
1050
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
1051
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
1052
+ return self.weight * hidden_states.to(input_dtype)
1053
+
1054
+ def extra_repr(self):
1055
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
1056
+
1057
+
1058
+ class Qwen2DecoderLayer(nn.Module):
1059
+ def __init__(self, config: Qwen2MMConfig, layer_idx: int):
1060
+ super().__init__()
1061
+ self.hidden_size = config.hidden_size
1062
+ self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
1063
+ self.mlp = Qwen2MLP(config)
1064
+ self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1065
+ self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1066
+ if config.sliding_window and config._attn_implementation != "flash_attention_2":
1067
+ logger.warning_once(
1068
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
1069
+ "unexpected results may be encountered."
1070
+ )
1071
+
1072
+ def forward(
1073
+ self,
1074
+ hidden_states: torch.Tensor,
1075
+ attention_mask: Optional[torch.Tensor] = None,
1076
+ position_ids: Optional[torch.LongTensor] = None,
1077
+ past_key_value: Optional[Cache] = None,
1078
+ output_attentions: Optional[bool] = False,
1079
+ use_cache: Optional[bool] = False,
1080
+ cache_position: Optional[torch.LongTensor] = None,
1081
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
1082
+ **kwargs: Unpack[FlashAttentionKwargs],
1083
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
1084
+ residual = hidden_states
1085
+
1086
+ hidden_states = self.input_layernorm(hidden_states)
1087
+
1088
+ # Self Attention
1089
+ hidden_states, self_attn_weights = self.self_attn(
1090
+ hidden_states=hidden_states,
1091
+ attention_mask=attention_mask,
1092
+ position_ids=position_ids,
1093
+ past_key_value=past_key_value,
1094
+ output_attentions=output_attentions,
1095
+ use_cache=use_cache,
1096
+ cache_position=cache_position,
1097
+ position_embeddings=position_embeddings,
1098
+ **kwargs,
1099
+ )
1100
+ hidden_states = residual + hidden_states
1101
+
1102
+ # Fully Connected
1103
+ residual = hidden_states
1104
+ hidden_states = self.post_attention_layernorm(hidden_states)
1105
+ hidden_states = self.mlp(hidden_states)
1106
+ hidden_states = residual + hidden_states
1107
+
1108
+ outputs = (hidden_states,)
1109
+ if output_attentions:
1110
+ outputs += (self_attn_weights,)
1111
+
1112
+ return outputs
1113
+
1114
+
1115
+ class Qwen2RotaryEmbedding(nn.Module):
1116
+ def __init__(self, config: Qwen2MMConfig, device=None):
1117
+ super().__init__()
1118
+ # BC: "rope_type" was originally "type"
1119
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
1120
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
1121
+ else:
1122
+ self.rope_type = "default"
1123
+ self.max_seq_len_cached = config.max_position_embeddings
1124
+ self.original_max_seq_len = config.max_position_embeddings
1125
+
1126
+ self.config = config
1127
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
1128
+
1129
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
1130
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
1131
+ self.original_inv_freq = self.inv_freq
1132
+
1133
+ def _dynamic_frequency_update(self, position_ids, device):
1134
+ """
1135
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
1136
+ 1 - growing beyond the cached sequence length (allow scaling)
1137
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
1138
+ """
1139
+ seq_len = torch.max(position_ids) + 1
1140
+ if seq_len > self.max_seq_len_cached: # growth
1141
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
1142
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
1143
+ self.max_seq_len_cached = seq_len
1144
+
1145
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
1146
+ # This .to() is needed if the model has been moved to a device after being initialized (because
1147
+ # the buffer is automatically moved, but not the original copy)
1148
+ self.original_inv_freq = self.original_inv_freq.to(device)
1149
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
1150
+ self.max_seq_len_cached = self.original_max_seq_len
1151
+
1152
+ @torch.no_grad()
1153
+ def forward(self, x, position_ids):
1154
+ if "dynamic" in self.rope_type:
1155
+ self._dynamic_frequency_update(position_ids, device=x.device)
1156
+
1157
+ # Core RoPE block
1158
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
1159
+ position_ids_expanded = position_ids[:, None, :].float()
1160
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
1161
+ device_type = x.device.type
1162
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
1163
+ with torch.autocast(device_type=device_type, enabled=False):
1164
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
1165
+ emb = torch.cat((freqs, freqs), dim=-1)
1166
+ cos = emb.cos()
1167
+ sin = emb.sin()
1168
+
1169
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
1170
+ cos = cos * self.attention_scaling
1171
+ sin = sin * self.attention_scaling
1172
+
1173
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
1174
+
1175
+
1176
+ QWEN2_START_DOCSTRING = r"""
1177
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1178
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1179
+ etc.)
1180
+
1181
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1182
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1183
+ and behavior.
1184
+
1185
+ Parameters:
1186
+ config ([`Qwen2MMConfig`]):
1187
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1188
+ load the weights associated with the model, only the configuration. Check out the
1189
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1190
+ """
1191
+
1192
+
1193
+ @add_start_docstrings(
1194
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
1195
+ QWEN2_START_DOCSTRING,
1196
+ )
1197
+ class Qwen2PreTrainedModel(PreTrainedModel):
1198
+ config_class = Qwen2MMConfig
1199
+ base_model_prefix = "model"
1200
+ supports_gradient_checkpointing = True
1201
+ _no_split_modules = ["Qwen2DecoderLayer"]
1202
+ _skip_keys_device_placement = ["past_key_values"]
1203
+ _supports_flash_attn_2 = True
1204
+ _supports_sdpa = True
1205
+ _supports_flex_attn = True
1206
+ _supports_cache_class = True
1207
+ _supports_quantized_cache = True
1208
+ _supports_static_cache = True
1209
+ _supports_attention_backend = True
1210
+
1211
+ def _init_weights(self, module):
1212
+ std = self.config.initializer_range
1213
+ if isinstance(module, nn.Linear):
1214
+ module.weight.data.normal_(mean=0.0, std=std)
1215
+ if module.bias is not None:
1216
+ module.bias.data.zero_()
1217
+ elif isinstance(module, nn.Embedding):
1218
+ module.weight.data.normal_(mean=0.0, std=std)
1219
+ if module.padding_idx is not None:
1220
+ module.weight.data[module.padding_idx].zero_()
1221
+
1222
+
1223
+ QWEN2_INPUTS_DOCSTRING = r"""
1224
+ Args:
1225
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1226
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1227
+ it.
1228
+
1229
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1230
+ [`PreTrainedTokenizer.__call__`] for details.
1231
+
1232
+ [What are input IDs?](../glossary#input-ids)
1233
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1234
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1235
+
1236
+ - 1 for tokens that are **not masked**,
1237
+ - 0 for tokens that are **masked**.
1238
+
1239
+ [What are attention masks?](../glossary#attention-mask)
1240
+
1241
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1242
+ [`PreTrainedTokenizer.__call__`] for details.
1243
+
1244
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1245
+ `past_key_values`).
1246
+
1247
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1248
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1249
+ information on the default strategy.
1250
+
1251
+ - 1 indicates the head is **not masked**,
1252
+ - 0 indicates the head is **masked**.
1253
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1254
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1255
+ config.n_positions - 1]`.
1256
+
1257
+ [What are position IDs?](../glossary#position-ids)
1258
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1259
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1260
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1261
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1262
+
1263
+ Two formats are allowed:
1264
+ - a [`~cache_utils.Cache`] instance, see our
1265
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
1266
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1267
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1268
+ cache format.
1269
+
1270
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1271
+ legacy cache format will be returned.
1272
+
1273
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1274
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1275
+ of shape `(batch_size, sequence_length)`.
1276
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1277
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1278
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1279
+ model's internal embedding lookup matrix.
1280
+ use_cache (`bool`, *optional*):
1281
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1282
+ `past_key_values`).
1283
+ output_attentions (`bool`, *optional*):
1284
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1285
+ tensors for more detail.
1286
+ output_hidden_states (`bool`, *optional*):
1287
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1288
+ more detail.
1289
+ return_dict (`bool`, *optional*):
1290
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1291
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
1292
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
1293
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
1294
+ the complete sequence length.
1295
+ """
1296
+
1297
+
1298
+ @add_start_docstrings(
1299
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
1300
+ QWEN2_START_DOCSTRING,
1301
+ )
1302
+ class Qwen2MMModel(Qwen2PreTrainedModel):
1303
+ """
1304
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
1305
+
1306
+ Args:
1307
+ config: Qwen2MMConfig
1308
+ """
1309
+
1310
+ def __init__(self, config: Qwen2MMConfig):
1311
+ super().__init__(config)
1312
+ self.padding_idx = config.pad_token_id
1313
+ self.vocab_size = config.vocab_size
1314
+
1315
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1316
+
1317
+ ######QWEN#################
1318
+ self.embed_tokens_extend = None
1319
+ if isinstance(config.embd_layer, dict):
1320
+ embedding_config = {
1321
+ 'embedding_cls': config.embd_layer['embedding_cls'],
1322
+ **config.embd_layer
1323
+ }
1324
+ self.embed_tokens_extend = Phi4MMImageAudioEmbedding(config, **embedding_config)
1325
+ self._attn_implementation = config._attn_implementation
1326
+ ############################
1327
+
1328
+ self.layers = nn.ModuleList(
1329
+ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1330
+ )
1331
+ self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1332
+ self.rotary_emb = Qwen2RotaryEmbedding(config=config)
1333
+ self.gradient_checkpointing = False
1334
+
1335
+ # Initialize weights and apply final processing
1336
+ self.post_init()
1337
+
1338
+ def get_input_embeddings(self):
1339
+ return self.embed_tokens
1340
+
1341
+ def set_input_embeddings(self, value):
1342
+ self.embed_tokens = value
1343
+
1344
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1345
+ def forward(
1346
+ # self,
1347
+ # input_ids: torch.LongTensor = None,
1348
+ # attention_mask: Optional[torch.Tensor] = None,
1349
+ # position_ids: Optional[torch.LongTensor] = None,
1350
+ # past_key_values: Optional[Cache] = None,
1351
+ # inputs_embeds: Optional[torch.FloatTensor] = None,
1352
+ # use_cache: Optional[bool] = None,
1353
+ # output_attentions: Optional[bool] = None,
1354
+ # output_hidden_states: Optional[bool] = None,
1355
+ # return_dict: Optional[bool] = None,
1356
+ # cache_position: Optional[torch.LongTensor] = None,
1357
+ ########QWEN############
1358
+ self,
1359
+ input_ids: torch.LongTensor = None,
1360
+ attention_mask: Optional[torch.Tensor] = None,
1361
+ position_ids: Optional[torch.LongTensor] = None,
1362
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1363
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1364
+ input_image_embeds: Optional[torch.FloatTensor] = None,
1365
+ image_sizes: Optional[torch.LongTensor] = None,
1366
+ image_attention_mask=None,
1367
+ input_audio_embeds: Optional[torch.FloatTensor] = None,
1368
+ audio_embed_sizes=None,
1369
+ audio_attention_mask=None,
1370
+ audio_projection_mode=None,
1371
+ use_cache: Optional[bool] = None,
1372
+ output_attentions: Optional[bool] = None,
1373
+ output_hidden_states: Optional[bool] = None,
1374
+ return_dict: Optional[bool] = None,
1375
+ cache_position: Optional[torch.LongTensor] = None,
1376
+ ##########################
1377
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
1378
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1379
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1380
+ output_hidden_states = (
1381
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1382
+ )
1383
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1384
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1385
+
1386
+ if (input_ids is None) ^ (inputs_embeds is not None):
1387
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
1388
+
1389
+ if self.gradient_checkpointing and self.training and use_cache:
1390
+ logger.warning_once(
1391
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
1392
+ )
1393
+ use_cache = False
1394
+
1395
+ # if inputs_embeds is None:
1396
+ # inputs_embeds = self.embed_tokens(input_ids)
1397
+
1398
+ ############QWEN###########
1399
+ if inputs_embeds is None:
1400
+ inputs_embeds = self.embed_tokens_extend(
1401
+ input_ids=input_ids,
1402
+ input_embeds=inputs_embeds,
1403
+ input_image_embeds=input_image_embeds,
1404
+ input_audio_embeds=input_audio_embeds,
1405
+ image_sizes=image_sizes,
1406
+ image_attention_mask=image_attention_mask,
1407
+ audio_embed_sizes=audio_embed_sizes,
1408
+ audio_attention_mask=audio_attention_mask,
1409
+ audio_projection_mode=audio_projection_mode,
1410
+ wte=self.embed_tokens,
1411
+ )
1412
+ ###########################
1413
+ if use_cache and past_key_values is None:
1414
+ past_key_values = DynamicCache()
1415
+
1416
+ if cache_position is None:
1417
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1418
+ cache_position = torch.arange(
1419
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
1420
+ )
1421
+
1422
+ if position_ids is None:
1423
+ position_ids = cache_position.unsqueeze(0)
1424
+
1425
+ causal_mask = self._update_causal_mask(
1426
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
1427
+ )
1428
+
1429
+ hidden_states = inputs_embeds
1430
+
1431
+ # create position embeddings to be shared across the decoder layers
1432
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
1433
+
1434
+ # decoder layers
1435
+ all_hidden_states = () if output_hidden_states else None
1436
+ all_self_attns = () if output_attentions else None
1437
+
1438
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
1439
+ if output_hidden_states:
1440
+ all_hidden_states += (hidden_states,)
1441
+
1442
+ if self.gradient_checkpointing and self.training:
1443
+ layer_outputs = self._gradient_checkpointing_func(
1444
+ decoder_layer.__call__,
1445
+ hidden_states,
1446
+ causal_mask,
1447
+ position_ids,
1448
+ past_key_values,
1449
+ output_attentions,
1450
+ use_cache,
1451
+ cache_position,
1452
+ position_embeddings,
1453
+ )
1454
+ else:
1455
+ layer_outputs = decoder_layer(
1456
+ hidden_states,
1457
+ attention_mask=causal_mask,
1458
+ position_ids=position_ids,
1459
+ past_key_value=past_key_values,
1460
+ output_attentions=output_attentions,
1461
+ use_cache=use_cache,
1462
+ cache_position=cache_position,
1463
+ position_embeddings=position_embeddings,
1464
+ **flash_attn_kwargs,
1465
+ )
1466
+
1467
+ hidden_states = layer_outputs[0]
1468
+
1469
+ if output_attentions:
1470
+ all_self_attns += (layer_outputs[1],)
1471
+
1472
+ hidden_states = self.norm(hidden_states)
1473
+
1474
+ # add hidden states from the last decoder layer
1475
+ if output_hidden_states:
1476
+ all_hidden_states += (hidden_states,)
1477
+
1478
+ output = BaseModelOutputWithPast(
1479
+ last_hidden_state=hidden_states,
1480
+ past_key_values=past_key_values if use_cache else None,
1481
+ hidden_states=all_hidden_states,
1482
+ attentions=all_self_attns,
1483
+ )
1484
+ return output if return_dict else output.to_tuple()
1485
+
1486
+ def _update_causal_mask(
1487
+ self,
1488
+ attention_mask: torch.Tensor,
1489
+ input_tensor: torch.Tensor,
1490
+ cache_position: torch.Tensor,
1491
+ past_key_values: Cache,
1492
+ output_attentions: bool,
1493
+ ):
1494
+ if self.config._attn_implementation == "flash_attention_2":
1495
+ if attention_mask is not None and past_key_values is not None:
1496
+ is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
1497
+ if is_padding_right:
1498
+ raise ValueError(
1499
+ "You are attempting to perform batched generation with padding_side='right'"
1500
+ " this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to "
1501
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1502
+ )
1503
+ if attention_mask is not None and 0.0 in attention_mask:
1504
+ return attention_mask
1505
+ return None
1506
+
1507
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1508
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1509
+ # to infer the attention mask.
1510
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1511
+ using_static_cache = isinstance(past_key_values, StaticCache)
1512
+ using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
1513
+
1514
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1515
+ if (
1516
+ self.config._attn_implementation == "sdpa"
1517
+ and not (using_static_cache or using_sliding_window_cache)
1518
+ and not output_attentions
1519
+ ):
1520
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1521
+ attention_mask,
1522
+ inputs_embeds=input_tensor,
1523
+ past_key_values_length=past_seen_tokens,
1524
+ sliding_window=self.config.sliding_window,
1525
+ is_training=self.training,
1526
+ ):
1527
+ return None
1528
+
1529
+ dtype, device = input_tensor.dtype, input_tensor.device
1530
+ min_dtype = torch.finfo(dtype).min
1531
+ sequence_length = input_tensor.shape[1]
1532
+ # SlidingWindowCache or StaticCache
1533
+ if using_sliding_window_cache or using_static_cache:
1534
+ target_length = past_key_values.get_max_cache_shape()
1535
+ # DynamicCache or no cache
1536
+ else:
1537
+ target_length = (
1538
+ attention_mask.shape[-1]
1539
+ if isinstance(attention_mask, torch.Tensor)
1540
+ else past_seen_tokens + sequence_length + 1
1541
+ )
1542
+
1543
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1544
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
1545
+ attention_mask,
1546
+ sequence_length=sequence_length,
1547
+ target_length=target_length,
1548
+ dtype=dtype,
1549
+ device=device,
1550
+ cache_position=cache_position,
1551
+ batch_size=input_tensor.shape[0],
1552
+ config=self.config,
1553
+ past_key_values=past_key_values,
1554
+ )
1555
+
1556
+ if (
1557
+ self.config._attn_implementation == "sdpa"
1558
+ and attention_mask is not None
1559
+ and attention_mask.device.type in ["cuda", "xpu"]
1560
+ and not output_attentions
1561
+ ):
1562
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1563
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1564
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1565
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1566
+
1567
+ return causal_mask
1568
+
1569
+ @staticmethod
1570
+ def _prepare_4d_causal_attention_mask_with_cache_position(
1571
+ attention_mask: torch.Tensor,
1572
+ sequence_length: int,
1573
+ target_length: int,
1574
+ dtype: torch.dtype,
1575
+ device: torch.device,
1576
+ cache_position: torch.Tensor,
1577
+ batch_size: int,
1578
+ config: Qwen2MMConfig,
1579
+ past_key_values: Cache,
1580
+ ):
1581
+ """
1582
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
1583
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
1584
+
1585
+ Args:
1586
+ attention_mask (`torch.Tensor`):
1587
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
1588
+ sequence_length (`int`):
1589
+ The sequence length being processed.
1590
+ target_length (`int`):
1591
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
1592
+ dtype (`torch.dtype`):
1593
+ The dtype to use for the 4D attention mask.
1594
+ device (`torch.device`):
1595
+ The device to plcae the 4D attention mask on.
1596
+ cache_position (`torch.Tensor`):
1597
+ Indices depicting the position of the input sequence tokens in the sequence.
1598
+ batch_size (`torch.Tensor`):
1599
+ Batch size.
1600
+ config (`Qwen2MMConfig`):
1601
+ The model's configuration class
1602
+ past_key_values (`Cache`):
1603
+ The cache class that is being used currently to generate
1604
+ """
1605
+ if attention_mask is not None and attention_mask.dim() == 4:
1606
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
1607
+ causal_mask = attention_mask
1608
+ else:
1609
+ min_dtype = torch.finfo(dtype).min
1610
+ causal_mask = torch.full(
1611
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
1612
+ )
1613
+ diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1614
+ if config.sliding_window is not None:
1615
+ # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
1616
+ # the check is needed to verify is current checkpoint was trained with sliding window or not
1617
+ if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
1618
+ sliding_attend_mask = torch.arange(target_length, device=device) <= (
1619
+ cache_position.reshape(-1, 1) - config.sliding_window
1620
+ )
1621
+ diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
1622
+ causal_mask *= diagonal_attend_mask
1623
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
1624
+ if attention_mask is not None:
1625
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1626
+ if attention_mask.shape[-1] > target_length:
1627
+ attention_mask = attention_mask[:, :target_length]
1628
+ mask_length = attention_mask.shape[-1]
1629
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
1630
+ causal_mask.device
1631
+ )
1632
+ padding_mask = padding_mask == 0
1633
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1634
+ padding_mask, min_dtype
1635
+ )
1636
+ return causal_mask
1637
+
1638
+
1639
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
1640
+
1641
+
1642
+ class Qwen2MMForCausalLM(Qwen2PreTrainedModel, GenerationMixin):
1643
+ _tied_weights_keys = ["lm_head.weight"]
1644
+ _tp_plan = {"lm_head": "colwise_rep"}
1645
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
1646
+
1647
+ def __init__(self, config):
1648
+ super().__init__(config)
1649
+ self.model = Qwen2MMModel(config)
1650
+ self.vocab_size = config.vocab_size
1651
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1652
+
1653
+ # Initialize weights and apply final processing
1654
+ self.post_init()
1655
+
1656
+ def get_input_embeddings(self):
1657
+ return self.model.embed_tokens
1658
+
1659
+ def set_input_embeddings(self, value):
1660
+ self.model.embed_tokens = value
1661
+
1662
+ def get_output_embeddings(self):
1663
+ return self.lm_head
1664
+
1665
+ def set_output_embeddings(self, new_embeddings):
1666
+ self.lm_head = new_embeddings
1667
+
1668
+ def set_decoder(self, decoder):
1669
+ self.model = decoder
1670
+
1671
+ def get_decoder(self):
1672
+ return self.model
1673
+
1674
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
1675
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1676
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1677
+ def forward(
1678
+ # self,
1679
+ # input_ids: torch.LongTensor = None,
1680
+ # attention_mask: Optional[torch.Tensor] = None,
1681
+ # position_ids: Optional[torch.LongTensor] = None,
1682
+ # past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1683
+ # inputs_embeds: Optional[torch.FloatTensor] = None,
1684
+ # labels: Optional[torch.LongTensor] = None,
1685
+ # use_cache: Optional[bool] = None,
1686
+ # output_attentions: Optional[bool] = None,
1687
+ # output_hidden_states: Optional[bool] = None,
1688
+ # return_dict: Optional[bool] = None,
1689
+ # cache_position: Optional[torch.LongTensor] = None,
1690
+ # logits_to_keep: Union[int, torch.Tensor] = 0,
1691
+ ######QWEN###############
1692
+ self,
1693
+ input_ids: torch.LongTensor = None,
1694
+ attention_mask: Optional[torch.Tensor] = None,
1695
+ position_ids: Optional[torch.LongTensor] = None,
1696
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1697
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1698
+ input_image_embeds: Optional[torch.FloatTensor] = None,
1699
+ image_sizes: Optional[torch.LongTensor] = None,
1700
+ image_attention_mask=None,
1701
+ input_audio_embeds: Optional[torch.FloatTensor] = None,
1702
+ audio_embed_sizes=None,
1703
+ audio_attention_mask=None,
1704
+ input_mode=None,
1705
+ labels: Optional[torch.LongTensor] = None,
1706
+ use_cache: Optional[bool] = None,
1707
+ output_attentions: Optional[bool] = None,
1708
+ output_hidden_states: Optional[bool] = None,
1709
+ return_dict: Optional[bool] = None,
1710
+ cache_position: Optional[torch.LongTensor] = None,
1711
+ num_logits_to_keep: int = 0,
1712
+ ####################################
1713
+
1714
+ **kwargs: Unpack[KwargsForCausalLM],
1715
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1716
+ r"""
1717
+ Args:
1718
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1719
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1720
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1721
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1722
+
1723
+ num_logits_to_keep (`int` or `torch.Tensor`, *optional*):
1724
+ If an `int`, compute logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
1725
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
1726
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
1727
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
1728
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
1729
+
1730
+ Returns:
1731
+
1732
+ Example:
1733
+
1734
+ ```python
1735
+ >>> from transformers import AutoTokenizer, Qwen2ForCausalLM
1736
+
1737
+ >>> model = Qwen2ForCausalLM.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
1738
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
1739
+
1740
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1741
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1742
+
1743
+ >>> # Generate
1744
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1745
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1746
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1747
+ ```"""
1748
+
1749
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1750
+ output_hidden_states = (
1751
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1752
+ )
1753
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1754
+
1755
+ ###########QWEN##########
1756
+ if isinstance(input_mode, torch.Tensor):
1757
+ # len(input_mode) == num_beams in beam search, and all elements of input_mode should have the same value
1758
+ input_mode = input_mode[0].item()
1759
+ input_mode = InputMode(input_mode)
1760
+
1761
+ if input_mode in [InputMode.VISION_SPEECH, InputMode.VISION]:
1762
+ # self.set_lora_adapter('vision')
1763
+ audio_projection_mode = 'vision'
1764
+ elif input_mode == InputMode.SPEECH:
1765
+ # self.set_lora_adapter('speech')
1766
+ audio_projection_mode = 'speech'
1767
+ elif input_mode == InputMode.LANGUAGE:
1768
+ # self.unset_lora_adapter()
1769
+ audio_projection_mode = 'speech'
1770
+ else:
1771
+ raise ValueError(f"Invalid input_mode: {input_mode}")
1772
+
1773
+ ##################################
1774
+
1775
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1776
+ outputs = self.model(
1777
+ input_ids=input_ids,
1778
+ attention_mask=attention_mask,
1779
+ position_ids=position_ids,
1780
+ past_key_values=past_key_values,
1781
+ inputs_embeds=inputs_embeds,
1782
+ input_image_embeds=input_image_embeds,
1783
+ image_sizes=image_sizes,
1784
+ image_attention_mask=image_attention_mask,
1785
+ input_audio_embeds=input_audio_embeds,
1786
+ audio_embed_sizes=audio_embed_sizes,
1787
+ audio_attention_mask=audio_attention_mask,
1788
+ audio_projection_mode=audio_projection_mode,
1789
+ use_cache=use_cache,
1790
+ output_attentions=output_attentions,
1791
+ output_hidden_states=output_hidden_states,
1792
+ return_dict=return_dict,
1793
+ **kwargs,
1794
+ )
1795
+
1796
+ hidden_states = outputs[0]
1797
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1798
+ slice_indices = slice(-num_logits_to_keep, None) if isinstance(num_logits_to_keep, int) else num_logits_to_keep
1799
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
1800
+
1801
+ loss = None
1802
+ if labels is not None:
1803
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
1804
+
1805
+ if not return_dict:
1806
+ output = (logits,) + outputs[1:]
1807
+ return (loss,) + output if loss is not None else output
1808
+
1809
+ return CausalLMOutputWithPast(
1810
+ loss=loss,
1811
+ logits=logits,
1812
+ past_key_values=outputs.past_key_values,
1813
+ hidden_states=outputs.hidden_states,
1814
+ attentions=outputs.attentions,
1815
+ )
1816
+
1817
+ def prepare_inputs_for_generation(
1818
+ self,
1819
+ input_ids,
1820
+ past_key_values=None,
1821
+ attention_mask=None,
1822
+ inputs_embeds=None,
1823
+ input_image_embeds=None,
1824
+ image_sizes=None,
1825
+ image_attention_mask=None,
1826
+ input_audio_embeds=None,
1827
+ audio_embed_sizes=None,
1828
+ audio_attention_mask=None,
1829
+ input_mode=None,
1830
+ cache_position=None,
1831
+ position_ids=None,
1832
+ use_cache=True,
1833
+ num_logits_to_keep=None,
1834
+ **kwargs
1835
+ ):
1836
+ # Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the
1837
+ # process
1838
+
1839
+ # When the first time input length reached long and short factor switching point, enforce re-compute cache
1840
+ # It will cause downside of slower at this single token position, however, better than current failure.
1841
+ if (
1842
+ past_key_values
1843
+ and self.config.rope_scaling
1844
+ and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1
1845
+ ):
1846
+ past_length = cache_position[0]
1847
+ if past_length <= self.config.original_max_position_embeddings:
1848
+ past_key_values = None
1849
+
1850
+ model_inputs = super().prepare_inputs_for_generation(
1851
+ input_ids=input_ids,
1852
+ past_key_values=past_key_values,
1853
+ attention_mask=attention_mask,
1854
+ inputs_embeds=inputs_embeds,
1855
+ input_image_embeds=input_image_embeds,
1856
+ image_sizes=image_sizes,
1857
+ image_attention_mask=image_attention_mask,
1858
+ input_audio_embeds=input_audio_embeds,
1859
+ audio_embed_sizes=audio_embed_sizes,
1860
+ audio_attention_mask=audio_attention_mask,
1861
+ input_mode=input_mode,
1862
+ cache_position=cache_position,
1863
+ position_ids=position_ids,
1864
+ use_cache=use_cache,
1865
+ num_logits_to_keep=num_logits_to_keep,
1866
+ **kwargs,
1867
+ )
1868
+ return model_inputs
1869
+
1870
+ #######################################################################################################
1871
+
1872
+
1873
+
1874
+ AutoConfig.register("qwen2-mm", Qwen2MMConfig)
1875
+ AutoModelForCausalLM.register(Qwen2MMConfig, Qwen2MMForCausalLM)
1876
+ Qwen2MMConfig.register_for_auto_class()
1877
+ Qwen2MMForCausalLM.register_for_auto_class("AutoModelForCausalLM")
processing_phi4mm.py ADDED
@@ -0,0 +1,744 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """
16
+ Processor class for Phi4MM
17
+ """
18
+ import re
19
+ from typing import List, Optional, Tuple, Union
20
+ import math
21
+ from enum import Enum
22
+
23
+ import numpy as np
24
+ import scipy
25
+ import torch
26
+ import torchvision
27
+
28
+ from transformers import AutoFeatureExtractor, AutoImageProcessor
29
+ from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
30
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
31
+ from transformers.image_utils import (
32
+ ImageInput,
33
+ make_list_of_images,
34
+ valid_images,
35
+ )
36
+ from transformers.processing_utils import ProcessorMixin
37
+ from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
38
+ from transformers.utils import TensorType, logging
39
+ from torch.nn.utils.rnn import pad_sequence
40
+
41
+
42
+ logger = logging.get_logger(__name__)
43
+
44
+ # Special tokens
45
+ _COMPATIBLE_IMAGE_SPECIAL_TOKEN_PATTERN = r'<\|im_start_im+\|>' # For backward compatibility
46
+ _COMPATIBLE_AUDIO_SPECIAL_TOKEN_PATTERN = r'<\|im_start+\|>' # For backward compatibility
47
+ _IMAGE_SPECIAL_TOKEN = '<|im_start_im|>'
48
+ _AUDIO_SPECIAL_TOKEN = '<|im_start|>'
49
+ _IMAGE_SPECIAL_TOKEN_ID = 1516444 # '<|endoftext10|>', or we can better name it (in `tokenizer_config.json`)
50
+ _AUDIO_SPECIAL_TOKEN_ID = 151644 # '<|endoftext11|>'
51
+
52
+
53
+ class InputMode(Enum):
54
+ LANGUAGE = 0
55
+ VISION = 1
56
+ SPEECH = 2
57
+ VISION_SPEECH = 3
58
+
59
+
60
+ class Phi4MMImageProcessor(BaseImageProcessor):
61
+ r"""
62
+ Constructs a Phi4MM image processor.
63
+ """
64
+ model_input_names = ["input_image_embeds", "image_sizes", "image_attention_mask"]
65
+
66
+ def __init__(
67
+ self,
68
+ dynamic_hd,
69
+ **kwargs,
70
+ ) -> None:
71
+ super().__init__(**kwargs)
72
+ self.dynamic_hd = dynamic_hd
73
+
74
+ def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
75
+ best_ratio_diff = float('inf')
76
+ best_ratio = (1, 1)
77
+ area = width * height
78
+ for ratio in target_ratios:
79
+ target_aspect_ratio = ratio[0] / ratio[1]
80
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
81
+ if ratio_diff < best_ratio_diff:
82
+ best_ratio_diff = ratio_diff
83
+ best_ratio = ratio
84
+ elif ratio_diff == best_ratio_diff:
85
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
86
+ best_ratio = ratio
87
+ return best_ratio
88
+
89
+ def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=384, mask_size=27, use_thumbnail=True):
90
+ orig_width, orig_height = image.size
91
+
92
+ w_crop_num = math.ceil(orig_width/float(image_size))
93
+ h_crop_num = math.ceil(orig_height/float(image_size))
94
+ if w_crop_num * h_crop_num > max_num:
95
+
96
+ aspect_ratio = orig_width / orig_height
97
+
98
+ # calculate the existing image aspect ratio
99
+ target_ratios = set(
100
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
101
+ i * j <= max_num and i * j >= min_num)
102
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
103
+
104
+ # find the closest aspect ratio to the target
105
+ target_aspect_ratio = self.find_closest_aspect_ratio(
106
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
107
+
108
+ # calculate the target width and height
109
+ target_width = image_size * target_aspect_ratio[0]
110
+ target_height = image_size * target_aspect_ratio[1]
111
+ else:
112
+ target_width = image_size * w_crop_num
113
+ target_height = image_size * h_crop_num
114
+ target_aspect_ratio = (w_crop_num, h_crop_num)
115
+
116
+ # Calculate the ratio
117
+ ratio_width = target_width / orig_width
118
+ ratio_height = target_height / orig_height
119
+ if ratio_width < ratio_height:
120
+ new_size = (target_width, int(orig_height * ratio_width))
121
+ padding_width = 0
122
+ padding_height = target_height - int(orig_height * ratio_width)
123
+ else:
124
+ new_size = (int(orig_width * ratio_height), target_height)
125
+ padding_width = target_width - int(orig_width * ratio_height)
126
+ padding_height = 0
127
+
128
+ attention_mask = torch.ones((int(mask_size*target_aspect_ratio[1]), int(mask_size*target_aspect_ratio[0])))
129
+ if padding_width >= 14:
130
+ attention_mask[:, -math.floor(padding_width/14):] = 0
131
+ if padding_height >= 14:
132
+ attention_mask[-math.floor(padding_height/14):,:] = 0
133
+ assert attention_mask.sum() > 0
134
+
135
+ if min(new_size[1], target_height) < 10 or min(new_size[0], target_width) < 10:
136
+ raise ValueError(f'the aspect ratio is very extreme {new_size}')
137
+
138
+ image = torchvision.transforms.functional.resize(image, [new_size[1], new_size[0]],)
139
+
140
+ resized_img = torchvision.transforms.functional.pad(image, [0, 0, padding_width, padding_height], fill=[255,255,255])
141
+
142
+ return resized_img, attention_mask
143
+
144
+ def pad_to_max_num_crops(self, images, max_crops=5):
145
+ """
146
+ images: B x 3 x H x W, B<=max_crops
147
+ """
148
+ B, _, H, W = images.shape
149
+ if B < max_crops:
150
+ pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
151
+ images = torch.cat([images, pad], dim=0)
152
+ return images
153
+
154
+ def pad_mask_to_max_num_crops(self, masks, max_crops=5):
155
+ B, H, W = masks.shape
156
+ if B < max_crops:
157
+ pad = torch.ones(max_crops - B, H, W, dtype=masks.dtype, device=masks.device)
158
+ masks = torch.cat([masks, pad], dim=0)
159
+ return masks
160
+
161
+ def preprocess(
162
+ self,
163
+ images: ImageInput,
164
+ return_tensors: Optional[Union[str, TensorType]] = None,
165
+ ):
166
+ """
167
+ Args:
168
+ images (`ImageInput`):
169
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
170
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
171
+ return_tensors (`str` or `TensorType`, *optional*):
172
+ The type of tensors to return. Can be one of:
173
+ - Unset: Return a list of `np.ndarray`.
174
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
175
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
176
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
177
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
178
+ """
179
+ images = make_list_of_images(images)
180
+
181
+ if not valid_images(images):
182
+ raise ValueError(
183
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
184
+ "torch.Tensor, tf.Tensor or jax.ndarray."
185
+ )
186
+
187
+ # Basic settings.
188
+ img_processor = torchvision.transforms.Compose([
189
+ torchvision.transforms.ToTensor(),
190
+ torchvision.transforms.Normalize(
191
+ (0.5, 0.5, 0.5),
192
+ (0.5, 0.5, 0.5)
193
+ ),
194
+ ])
195
+ dyhd_base_resolution = 448
196
+
197
+ # Dynamic HD
198
+ base_resolution = dyhd_base_resolution
199
+ images = [image.convert('RGB') for image in images]
200
+ # cover 384 and 448 resolution
201
+ mask_resolution = base_resolution // 14
202
+ elems, image_attention_masks = [], []
203
+ for im in images:
204
+ elem, attention_mask = self.dynamic_preprocess(im, max_num=self.dynamic_hd, image_size=base_resolution, mask_size=mask_resolution)
205
+ elems.append(elem)
206
+ image_attention_masks.append(attention_mask)
207
+ hd_images = [img_processor(im) for im in elems]
208
+ global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(base_resolution, base_resolution), mode='bicubic',).to(im.dtype) for im in hd_images]
209
+ shapes = [[im.size(1), im.size(2)] for im in hd_images]
210
+ mask_shapes = [[mask.size(0), mask.size(1)] for mask in image_attention_masks]
211
+ global_attention_mask = [torch.ones((1, mask_resolution, mask_resolution)) for _ in hd_images]
212
+ hd_images_reshape = [im.reshape(1, 3,
213
+ h//base_resolution,
214
+ base_resolution,
215
+ w//base_resolution,
216
+ base_resolution
217
+ ).permute(0,2,4,1,3,5).reshape(-1, 3, base_resolution, base_resolution).contiguous() for im, (h, w) in zip(hd_images, shapes)]
218
+ attention_masks_reshape = [mask.reshape(1,
219
+ h//mask_resolution,
220
+ mask_resolution,
221
+ w//mask_resolution,
222
+ mask_resolution
223
+ ).permute(0,1,3,2,4).reshape(-1, mask_resolution, mask_resolution).contiguous() for mask, (h, w) in zip(image_attention_masks, mask_shapes)]
224
+ downsample_attention_masks = [mask[:,0::2,0::2].reshape(1,
225
+ h//mask_resolution,
226
+ w//mask_resolution,
227
+ mask_resolution//2+mask_resolution%2,
228
+ mask_resolution//2+mask_resolution%2
229
+ ).permute(0,1,3,2,4) for mask, (h,w) in zip(attention_masks_reshape, mask_shapes)]
230
+ downsample_attention_masks = [mask.reshape(mask.size(1)*mask.size(2), mask.size(3)*mask.size(4))for mask in downsample_attention_masks]
231
+ num_img_tokens = [256 + 1 + int(mask.sum().item()) + int(mask[:,0].sum().item()) + 16 for mask in downsample_attention_masks]
232
+
233
+ hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
234
+ hd_masks_reshape = [torch.cat([_global_mask] + [_mask], dim=0) for _global_mask, _mask in zip(global_attention_mask, attention_masks_reshape)]
235
+ max_crops = max([img.size(0) for img in hd_images_reshape])
236
+ image_transformed = [self.pad_to_max_num_crops(im, max_crops) for im in hd_images_reshape]
237
+ image_transformed = torch.stack(image_transformed, dim=0)
238
+ mask_transformed = [self.pad_mask_to_max_num_crops(mask, max_crops) for mask in hd_masks_reshape]
239
+ mask_transformed = torch.stack(mask_transformed, dim=0)
240
+
241
+ returned_input_image_embeds = image_transformed
242
+ returned_image_sizes = torch.tensor(shapes, dtype=torch.long)
243
+ returned_image_attention_mask = mask_transformed
244
+ returned_num_img_tokens = num_img_tokens
245
+
246
+ data = {
247
+ "input_image_embeds": returned_input_image_embeds,
248
+ "image_sizes": returned_image_sizes,
249
+ "image_attention_mask": returned_image_attention_mask,
250
+ "num_img_tokens": returned_num_img_tokens,
251
+ }
252
+
253
+ return BatchFeature(data=data, tensor_type=return_tensors)
254
+
255
+
256
+ AudioInput = Tuple[Union[np.ndarray, torch.Tensor], int]
257
+ AudioInputs = List[AudioInput]
258
+
259
+
260
+ def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):
261
+ """Create a Mel filter-bank the same as SpeechLib FbankFC.
262
+
263
+ Args:
264
+ sample_rate (int): Sample rate in Hz. number > 0 [scalar]
265
+ n_fft (int): FFT size. int > 0 [scalar]
266
+ n_mel (int): Mel filter size. int > 0 [scalar]
267
+ fmin (float): lowest frequency (in Hz). If None use 0.0.
268
+ float >= 0 [scalar]
269
+ fmax: highest frequency (in Hz). If None use sample_rate / 2.
270
+ float >= 0 [scalar]
271
+
272
+ Returns
273
+ out (numpy.ndarray): Mel transform matrix
274
+ [shape=(n_mels, 1 + n_fft/2)]
275
+ """
276
+
277
+ bank_width = int(n_fft // 2 + 1)
278
+ if fmax is None:
279
+ fmax = sample_rate / 2
280
+ if fmin is None:
281
+ fmin = 0
282
+ assert fmin >= 0, "fmin cannot be negtive"
283
+ assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]"
284
+
285
+ def mel(f):
286
+ return 1127.0 * np.log(1.0 + f / 700.0)
287
+
288
+ def bin2mel(fft_bin):
289
+ return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))
290
+
291
+ def f2bin(f):
292
+ return int((f * n_fft / sample_rate) + 0.5)
293
+
294
+ # Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]
295
+ klo = f2bin(fmin) + 1
296
+ khi = f2bin(fmax)
297
+
298
+ khi = max(khi, klo)
299
+
300
+ # Spec 2: SpeechLib uses trianges in Mel space
301
+ mlo = mel(fmin)
302
+ mhi = mel(fmax)
303
+ m_centers = np.linspace(mlo, mhi, n_mels + 2)
304
+ ms = (mhi - mlo) / (n_mels + 1)
305
+
306
+ matrix = np.zeros((n_mels, bank_width), dtype=np.float32)
307
+ for m in range(0, n_mels):
308
+ left = m_centers[m]
309
+ center = m_centers[m + 1]
310
+ right = m_centers[m + 2]
311
+ for fft_bin in range(klo, khi):
312
+ mbin = bin2mel(fft_bin)
313
+ if left < mbin < right:
314
+ matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms
315
+
316
+ return matrix
317
+
318
+
319
+ class Phi4MMAudioFeatureExtractor(SequenceFeatureExtractor):
320
+ model_input_names = ["input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"]
321
+
322
+ def __init__(self, audio_compression_rate, audio_downsample_rate, audio_feat_stride, **kwargs):
323
+ feature_size = 80
324
+ sampling_rate = 16000
325
+ padding_value = 0.0
326
+ super().__init__(feature_size, sampling_rate, padding_value, **kwargs)
327
+
328
+ self.compression_rate = audio_compression_rate
329
+ self.qformer_compression_rate = audio_downsample_rate
330
+ self.feat_stride = audio_feat_stride
331
+
332
+ self._eightk_method = "fillzero"
333
+ self._mel = speechlib_mel(16000, 512, 80, fmin=None, fmax=7690).T
334
+
335
+ self._hamming400 = np.hamming(400) # for 16k audio
336
+ self._hamming200 = np.hamming(200) # for 8k audio
337
+
338
+ def duration_to_frames(self, duration):
339
+ """duration in s, estimated frames"""
340
+ frame_rate = 10
341
+
342
+ num_frames = duration * 1000 // frame_rate
343
+ return num_frames
344
+
345
+ def __call__(
346
+ self,
347
+ audios: List[AudioInput],
348
+ return_tensors: Optional[Union[str, TensorType]] = None,
349
+ ):
350
+ # Ref: https://github.com/huggingface/transformers/blob/v4.47.0/src/transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py#L161
351
+ returned_input_audio_embeds = []
352
+ returned_audio_embed_sizes = []
353
+ audio_frames_list = []
354
+
355
+ for audio_data, sample_rate in audios:
356
+ audio_embeds = self._extract_features(audio_data, sample_rate)
357
+ audio_frames = len(audio_embeds) * self.feat_stride
358
+ audio_embed_size = self._compute_audio_embed_size(audio_frames)
359
+
360
+ returned_input_audio_embeds.append(torch.tensor(audio_embeds))
361
+ returned_audio_embed_sizes.append(torch.tensor(audio_embed_size).long())
362
+ audio_frames_list.append(audio_frames)
363
+
364
+ returned_input_audio_embeds = pad_sequence(
365
+ returned_input_audio_embeds, batch_first=True
366
+ )
367
+ returned_audio_embed_sizes = torch.stack(returned_audio_embed_sizes, dim=0)
368
+ audio_frames = torch.tensor(audio_frames_list)
369
+ returned_audio_attention_mask = torch.arange(0, audio_frames.max()).unsqueeze(0) < audio_frames.unsqueeze(1) if len(audios) > 1 else None
370
+
371
+ data = {
372
+ "input_audio_embeds": returned_input_audio_embeds,
373
+ "audio_embed_sizes": returned_audio_embed_sizes,
374
+ }
375
+ if returned_audio_attention_mask is not None:
376
+ data["audio_attention_mask"] = returned_audio_attention_mask
377
+
378
+ return BatchFeature(data=data, tensor_type=return_tensors)
379
+
380
+ def _extract_spectrogram(self, wav, fs):
381
+ """Extract spectrogram features from waveform.
382
+ Args:
383
+ wav (1D array): waveform of the input
384
+ fs (int): sampling rate of the waveform, 16000 or 8000.
385
+ If fs=8000, the waveform will be resampled to 16000Hz.
386
+ Output:
387
+ log_fbank (2D array): a TxD matrix of log Mel filterbank features.
388
+ D=80, and T is the number of frames.
389
+ """
390
+ if wav.ndim > 1:
391
+ wav = np.squeeze(wav)
392
+
393
+ # by default, we extract the mean if stereo
394
+ if len(wav.shape) == 2:
395
+ wav = wav.mean(1)
396
+
397
+ # Resample to 16000 or 8000 if needed
398
+ if fs > 16000:
399
+ wav = scipy.signal.resample_poly(wav, 1, fs // 16000)
400
+ fs = 16000
401
+ elif 8000 < fs < 16000:
402
+ wav = scipy.signal.resample_poly(wav, 1, fs // 8000)
403
+ fs = 8000
404
+ elif fs < 8000:
405
+ raise RuntimeError(f"Unsupported sample rate {fs}")
406
+
407
+ if fs == 8000:
408
+ if self._eightk_method == "resample":
409
+ # Input audio is 8 kHz. Convert to 16 kHz before feature
410
+ # extraction
411
+ wav = scipy.signal.resample_poly(wav, 2, 1)
412
+ fs = 16000
413
+ # Do nothing here for fillzero method
414
+ elif fs != 16000:
415
+ # Input audio is not a supported sample rate.
416
+ raise RuntimeError(f"Input data using an unsupported sample rate: {fs}")
417
+
418
+ preemphasis = 0.97
419
+
420
+ if fs == 8000:
421
+ n_fft = 256
422
+ win_length = 200
423
+ hop_length = 80
424
+ fft_window = self._hamming200
425
+ elif fs == 16000:
426
+ n_fft = 512
427
+ win_length = 400
428
+ hop_length = 160
429
+ fft_window = self._hamming400
430
+
431
+ # Spec 1: SpeechLib cut remaining sample insufficient for a hop
432
+ n_batch = (wav.shape[0] - win_length) // hop_length + 1
433
+ # Here we don't use stride_tricks since the input array may not satisfy
434
+ # memory layout requirement and we need writeable output
435
+ # Here we only use list of views before copy to desination
436
+ # so it is more efficient than broadcasting
437
+ y_frames = np.array(
438
+ [wav[_stride : _stride + win_length] for _stride in range(0, hop_length * n_batch, hop_length)],
439
+ dtype=np.float32,
440
+ )
441
+
442
+ # Spec 2: SpeechLib applies preemphasis within each batch
443
+ y_frames_prev = np.roll(y_frames, 1, axis=1)
444
+ y_frames_prev[:, 0] = y_frames_prev[:, 1]
445
+ y_frames = (y_frames - preemphasis * y_frames_prev) * 32768
446
+
447
+ S = np.fft.rfft(fft_window * y_frames, n=n_fft, axis=1).astype(np.complex64)
448
+
449
+ if fs == 8000:
450
+ # Need to pad the output to look like 16 kHz data but with zeros in
451
+ # the 4 to 8 kHz bins.
452
+ frames, bins = S.shape
453
+ padarray = np.zeros((frames, bins))
454
+ S = np.concatenate((S[:, 0:-1], padarray), axis=1) # Nyquist bin gets set to zero
455
+
456
+ spec = np.abs(S).astype(np.float32)
457
+ return spec
458
+
459
+ def _extract_features(self, wav, fs):
460
+ """Extract log filterbank features from waveform.
461
+ Args:
462
+ wav (1D array): waveform of the input
463
+ fs (int): sampling rate of the waveform, 16000 or 8000.
464
+ If fs=8000, the waveform will be resampled to 16000Hz.
465
+ Output:
466
+ log_fbank (2D array): a TxD matrix of log Mel filterbank features.
467
+ D=80, and T is the number of frames.
468
+ """
469
+ spec = self._extract_spectrogram(wav, fs)
470
+ spec_power = spec**2
471
+
472
+ fbank_power = np.clip(spec_power.dot(self._mel), 1.0, None)
473
+ log_fbank = np.log(fbank_power).astype(np.float32)
474
+
475
+ return log_fbank
476
+
477
+ def _compute_audio_embed_size(self, audio_frames):
478
+ integer = audio_frames // self.compression_rate
479
+ remainder = audio_frames % self.compression_rate
480
+
481
+ result = integer if remainder == 0 else integer + 1
482
+
483
+ integer = result // self.qformer_compression_rate
484
+ remainder = result % self.qformer_compression_rate
485
+ result = integer if remainder == 0 else integer + 1 # qformer compression
486
+
487
+ return result
488
+
489
+
490
+ class Phi4MMProcessor(ProcessorMixin):
491
+ r"""
492
+ Constructs a Phi4MM processor which raps an image processor, a audio processor, and a GPT tokenizer into a single processor.
493
+
494
+ [`Phi4MMProcessor`] offers all the functionalities of [`Phi4MMImageProcessor`] and [`GPT2Tokenizer`]. See the
495
+ [`~Phi4MMProcessor.__call__`] and [`~Phi4MMProcessor.decode`] for more information.
496
+
497
+ Args:
498
+ image_processor ([`Phi4MMImageProcessor`], *optional*):
499
+ The image processor is a required input.
500
+ tokenizer ([`GPT2Tokenizer`], *optional*):
501
+ The tokenizer is a required input.
502
+ """
503
+
504
+ attributes = ["image_processor", "audio_processor", "tokenizer"]
505
+ tokenizer_class = "Qwen2Tokenizer"
506
+ image_processor_class = "AutoImageProcessor" # Phi4MMImageProcessor will be registered later
507
+ audio_processor_class = "AutoFeatureExtractor" # Phi4MMAudioFeatureExtractor will be registered later
508
+
509
+ def __init__(self, image_processor, audio_processor, tokenizer):
510
+ self.image_processor = image_processor
511
+ self.audio_processor = audio_processor
512
+ self.tokenizer = tokenizer
513
+
514
+ def __call__(
515
+ self,
516
+ text: Union[TextInput, List[TextInput]],
517
+ images: Optional[ImageInput] = None,
518
+ audios: Optional[AudioInputs] = None,
519
+ padding: Union[bool, str, PaddingStrategy] = False,
520
+ truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
521
+ max_length=None,
522
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
523
+ ) -> BatchFeature:
524
+ """
525
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forards the `text`
526
+ and `kwargs` arguments to GPT2Tokenizer's [`~GPT2Tokenizer.__call__`] if `text` is not `None` to encode
527
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
528
+ Phi4MMImageProcessor's [`~Phi4MMImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
529
+ of the above two methods for more information.
530
+
531
+ Args:
532
+ text (`str`, `List[str]`, `List[List[str]]`):
533
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
534
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
535
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
536
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
537
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
538
+ tensor. Both channels-first and channels-last formats are supported.
539
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
540
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
541
+ index) among:
542
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
543
+ sequence if provided).
544
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
545
+ acceptable input length for the model if that argument is not provided.
546
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
547
+ lengths).
548
+ max_length (`int`, *optional*):
549
+ Maximum length of the returned list and optionally padding length (see above).
550
+ truncation (`bool`, *optional*):
551
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
552
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
553
+ If set, will return tensors of a particular framework. Acceptable values are:
554
+
555
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
556
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
557
+ - `'np'`: Return NumPy `np.ndarray` objects.
558
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
559
+
560
+ Returns:
561
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
562
+
563
+ - **input_ids** -- List of token ids to be fed to a model.
564
+ - **input_image_embeds** -- Pixel values to be fed to a model.
565
+ - **image_sizes** -- List of tuples specifying the size of each image in `input_image_embeds`.
566
+ - **image_attention_mask** -- List of attention masks for each image in `input_image_embeds`.
567
+ - **input_audio_embeds** -- Audio embeddings to be fed to a model.
568
+ - **audio_embed_sizes** -- List of integers specifying the size of each audio in `input_audio_embeds`.
569
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model.
570
+ """
571
+ image_inputs = self.image_processor(images, return_tensors=return_tensors) if images is not None else {}
572
+ audio_inputs = self.audio_processor(audios, return_tensors=return_tensors) if audios is not None else {}
573
+ inputs = self._convert_images_audios_text_to_inputs(
574
+ image_inputs,
575
+ audio_inputs,
576
+ text,
577
+ padding=padding,
578
+ truncation=truncation,
579
+ max_length=max_length,
580
+ return_tensors=return_tensors,
581
+ )
582
+
583
+ # idenfity the input mode
584
+ if len(image_inputs) > 0 and len(audio_inputs) > 0:
585
+ input_mode = InputMode.VISION_SPEECH
586
+ elif len(image_inputs) > 0:
587
+ input_mode = InputMode.VISION
588
+ elif len(audio_inputs) > 0:
589
+ input_mode = InputMode.SPEECH
590
+ else:
591
+ input_mode = InputMode.LANGUAGE
592
+ inputs["input_mode"] = torch.tensor([input_mode.value], dtype=torch.long)
593
+
594
+ return inputs
595
+
596
+ @property
597
+ def special_image_token_id(self):
598
+ return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
599
+
600
+ def get_special_image_token_id(self):
601
+ return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
602
+
603
+ @property
604
+ def chat_template(self):
605
+ return self.tokenizer.chat_template
606
+
607
+ def _convert_images_audios_text_to_inputs(
608
+ self, images, audios, text, padding=False, truncation=None, max_length=None, return_tensors=None
609
+ ):
610
+ # prepare image id to image input ids
611
+ if len(images) > 0:
612
+ input_image_embeds = images["input_image_embeds"]
613
+ image_sizes = images["image_sizes"]
614
+ image_attention_mask = images["image_attention_mask"]
615
+ num_img_tokens = images['num_img_tokens']
616
+ else:
617
+ input_image_embeds = torch.tensor([])
618
+ image_sizes = torch.tensor([])
619
+ image_attention_mask = torch.tensor([])
620
+ num_img_tokens = []
621
+
622
+ # prepare audio id to audio input ids
623
+ if len(audios) > 0:
624
+ input_audio_embeds = audios["input_audio_embeds"]
625
+ audio_embed_sizes = audios["audio_embed_sizes"]
626
+ audio_attention_mask = audios.get("audio_attention_mask", None)
627
+ else:
628
+ input_audio_embeds = torch.tensor([])
629
+ audio_embed_sizes = torch.tensor([])
630
+ audio_attention_mask = None
631
+
632
+ # Replace certain special tokens for compatibility
633
+ # Ref: https://stackoverflow.com/questions/11475885/python-replace-regex
634
+ if isinstance(text, str):
635
+ text = [text]
636
+ assert isinstance(text, list)
637
+ processed_text = [re.sub(_COMPATIBLE_IMAGE_SPECIAL_TOKEN_PATTERN, _IMAGE_SPECIAL_TOKEN, t) for t in text]
638
+ processed_text = [re.sub(_COMPATIBLE_AUDIO_SPECIAL_TOKEN_PATTERN, _AUDIO_SPECIAL_TOKEN, t) for t in processed_text]
639
+
640
+ input_ids_list = [self.tokenizer(t).input_ids for t in processed_text]
641
+
642
+ img_cnt, audio_cnt = 0, 0 # only needed for later assertion
643
+ image_token_count_iter = iter(num_img_tokens)
644
+ audio_embed_size_iter = iter(audio_embed_sizes.tolist())
645
+ new_input_ids_list = []
646
+ for input_ids in input_ids_list:
647
+ i = 0
648
+ while i < len(input_ids):
649
+ token_id = input_ids[i]
650
+ if token_id == _AUDIO_SPECIAL_TOKEN_ID:
651
+ token_count = next(audio_embed_size_iter)
652
+ audio_cnt += 1
653
+ elif token_id == _IMAGE_SPECIAL_TOKEN_ID:
654
+ token_count = next(image_token_count_iter)
655
+ img_cnt += 1
656
+ else:
657
+ i += 1
658
+ continue
659
+ tokens = [token_id] * token_count
660
+ input_ids = input_ids[:i] + tokens + input_ids[i + 1:]
661
+ i += token_count
662
+ input_ids = torch.tensor(input_ids, dtype=torch.long)
663
+ new_input_ids_list.append(input_ids)
664
+ lengths = torch.tensor([len(input_ids) for input_ids in new_input_ids_list])
665
+ max_len = lengths.max()
666
+ input_ids = input_ids.new_full((len(new_input_ids_list), max_len), self.tokenizer.pad_token_id)
667
+ # batched inference requires left padding
668
+
669
+ ########QWEN##############
670
+ for i in range(len(new_input_ids_list)):
671
+ input_ids[i, max_len - len(new_input_ids_list[i]):] = new_input_ids_list[i]
672
+
673
+ # for i in range(len(new_input_ids_list)):
674
+ # input_ids[i, :len(new_input_ids_list[i])] = new_input_ids_list[i]
675
+
676
+ # If the below assertion fails, it might be that input pure-text
677
+ # messages contain image/audio special tokens literally
678
+ # (<|endoftext10|>, <|endoftext11|>).
679
+ assert (
680
+ img_cnt == len(num_img_tokens)
681
+ ), (
682
+ f"Number of image tokens in prompt_token_ids ({img_cnt}) "
683
+ f"does not match number of images ({len(num_img_tokens)})"
684
+ )
685
+ assert (
686
+ audio_cnt == len(audio_embed_sizes)
687
+ ), (
688
+ f"Number of audio tokens in prompt_token_ids ({audio_cnt}) "
689
+ f"does not match number of audios ({len(audio_embed_sizes)})"
690
+ )
691
+
692
+ # prepare attention mask
693
+ ########QWEN##############
694
+ seq_range = torch.arange(max_len - 1, -1, -1)
695
+ # seq_range = torch.arange(0,max_len)
696
+ attention_mask = seq_range.unsqueeze(0) < lengths.unsqueeze(1)
697
+
698
+ # # prepare batch feature
699
+ # print(input_ids)
700
+ # print(attention_mask)
701
+ # print(pp)
702
+
703
+ data = {
704
+ "input_ids": input_ids,
705
+ "input_image_embeds": input_image_embeds,
706
+ "image_sizes": image_sizes,
707
+ "image_attention_mask": image_attention_mask,
708
+ "input_audio_embeds": input_audio_embeds,
709
+ "audio_embed_sizes": audio_embed_sizes,
710
+ "audio_attention_mask": audio_attention_mask,
711
+ "attention_mask": attention_mask,
712
+ }
713
+
714
+ return BatchFeature(
715
+ data=data
716
+ )
717
+
718
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
719
+ def batch_decode(self, *args, **kwargs):
720
+ """
721
+ This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
722
+ refer to the docstring of this method for more information.
723
+ """
724
+ return self.tokenizer.batch_decode(*args, **kwargs)
725
+
726
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
727
+ def decode(self, *args, **kwargs):
728
+ """
729
+ This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
730
+ the docstring of this method for more information.
731
+ """
732
+ return self.tokenizer.decode(*args, **kwargs)
733
+
734
+ @property
735
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
736
+ def model_input_names(self):
737
+ tokenizer_input_names = self.tokenizer.model_input_names
738
+ image_processor_input_names = self.image_processor.model_input_names
739
+ audio_processor_input_names = self.audio_processor.model_input_names
740
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + audio_processor_input_names))
741
+
742
+
743
+ AutoImageProcessor.register("Phi4MMImageProcessor", Phi4MMImageProcessor)
744
+ AutoFeatureExtractor.register("Phi4MMAudioFeatureExtractor", Phi4MMAudioFeatureExtractor)
speech_conformer_encoder.py ADDED
The diff for this file is too large to render. See raw diff