--- base_model: cambridgeltl/SapBERT-from-PubMedBERT-fulltext library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: exorphins - text: phosphatidylethanolamines - text: lipopolysaccharides - text: ion channels - text: caspases inference: false model-index: - name: SetFit with cambridgeltl/SapBERT-from-PubMedBERT-fulltext results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.17570754716981132 name: Accuracy --- # SetFit with cambridgeltl/SapBERT-from-PubMedBERT-fulltext This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [cambridgeltl/SapBERT-from-PubMedBERT-fulltext](https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext) as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [cambridgeltl/SapBERT-from-PubMedBERT-fulltext](https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext) - **Classification head:** a MultiOutputClassifier instance - **Maximum Sequence Length:** 512 tokens ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.1757 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("caspases") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 1 | 1.7652 | 5 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 15 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0009 | 1 | 0.2361 | - | | 0.0463 | 50 | 0.2377 | - | | 0.0927 | 100 | 0.2269 | - | | 0.1390 | 150 | 0.2104 | - | | 0.1854 | 200 | 0.1871 | - | | 0.2317 | 250 | 0.1437 | - | | 0.2780 | 300 | 0.1322 | - | | 0.3244 | 350 | 0.1365 | - | | 0.3707 | 400 | 0.1155 | - | | 0.4171 | 450 | 0.1144 | - | | 0.4634 | 500 | 0.1068 | - | | 0.5097 | 550 | 0.1011 | - | | 0.5561 | 600 | 0.095 | - | | 0.6024 | 650 | 0.0933 | - | | 0.6487 | 700 | 0.1063 | - | | 0.6951 | 750 | 0.0999 | - | | 0.7414 | 800 | 0.0823 | - | | 0.7878 | 850 | 0.0877 | - | | 0.8341 | 900 | 0.0767 | - | | 0.8804 | 950 | 0.0849 | - | | 0.9268 | 1000 | 0.0796 | - | | 0.9731 | 1050 | 0.0877 | - | | 1.0195 | 1100 | 0.0759 | - | | 1.0658 | 1150 | 0.0705 | - | | 1.1121 | 1200 | 0.0728 | - | | 1.1585 | 1250 | 0.0738 | - | | 1.2048 | 1300 | 0.0767 | - | | 1.2512 | 1350 | 0.0692 | - | | 1.2975 | 1400 | 0.0697 | - | | 1.3438 | 1450 | 0.0639 | - | | 1.3902 | 1500 | 0.0729 | - | | 1.4365 | 1550 | 0.0759 | - | | 1.4829 | 1600 | 0.0786 | - | | 1.5292 | 1650 | 0.0618 | - | | 1.5755 | 1700 | 0.0722 | - | | 1.6219 | 1750 | 0.0719 | - | | 1.6682 | 1800 | 0.072 | - | | 1.7146 | 1850 | 0.0654 | - | | 1.7609 | 1900 | 0.0683 | - | | 1.8072 | 1950 | 0.0654 | - | | 1.8536 | 2000 | 0.0679 | - | | 1.8999 | 2050 | 0.0643 | - | | 1.9462 | 2100 | 0.0662 | - | | 1.9926 | 2150 | 0.0642 | - | | 2.0389 | 2200 | 0.0812 | - | | 2.0853 | 2250 | 0.068 | - | | 2.1316 | 2300 | 0.0583 | - | | 2.1779 | 2350 | 0.0627 | - | | 2.2243 | 2400 | 0.0654 | - | | 2.2706 | 2450 | 0.0571 | - | | 2.3170 | 2500 | 0.0623 | - | | 2.3633 | 2550 | 0.0639 | - | | 2.4096 | 2600 | 0.059 | - | | 2.4560 | 2650 | 0.0637 | - | | 2.5023 | 2700 | 0.0675 | - | | 2.5487 | 2750 | 0.0696 | - | | 2.5950 | 2800 | 0.0669 | - | | 2.6413 | 2850 | 0.0633 | - | | 2.6877 | 2900 | 0.0606 | - | | 2.7340 | 2950 | 0.0609 | - | | 2.7804 | 3000 | 0.054 | - | | 2.8267 | 3050 | 0.0598 | - | | 2.8730 | 3100 | 0.0597 | - | | 2.9194 | 3150 | 0.0618 | - | | 2.9657 | 3200 | 0.065 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.1.1 - Transformers: 4.39.0 - PyTorch: 2.4.1+cu121 - Datasets: 3.0.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```