# MiniMax-Text-01 Function Call Guide ## 📖 Introduction MiniMax-Text-01 model supports function calling capability, allowing the model to identify when an external function needs to be called and output function call parameters in a structured format. This document provides detailed instructions on how to use the function calling feature of MiniMax-Text-01. ## 🛠️ Defining Function Calls ### Function Structure Function calls need to be defined in the `tools` field of the request body. Each function consists of: ```json { "tools": [ { "type": "function", "function": { "name": "function_name", // Function name, required "description": "function_description", // Brief description of the function's purpose "parameters": { // Parameter definition in JSON Schema format "type": "object", // Overall type, fixed as "object" "properties": { // Parameter property object "param_name": { // Parameter name "description": "Parameter description", // Description "type": "string|number|boolean|array|object" // Type } }, "required": ["param1", "param2"] // List of required parameters } } } ] } ``` ### Example Below is a simple example of a weather query function definition: ```json "tools": [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the latest weather for a location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "A certain city, such as Beijing, Shanghai" } }, "required": ["location"] } } } ] ``` ### Complete Request Example Below is a complete Python code example that includes function definitions: ```python payload = json.dumps({ "model": "MiniMax-Text-01", "messages": [ { "role": "system", "content": "MM Intelligent Assistant is a large-scale language model developed by MiniMax and has no interfaces to call other products. MiniMax is a China technology company that has been committed to conducting research related to large models." }, { "role": "user", "content": "What's the weather like in Shanghai today?" } ], "tools": [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the latest weather for a location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "A certain city, such as Beijing, Shanghai" } }, "required": ["location"] } } } ], "tool_choice": "auto", "stream": True, "max_tokens": 10000, "temperature": 0.9, "top_p": 1 }) ``` ## 🔄 Function Call Input Format When processed internally by the model, function definitions are converted to a special format and concatenated to the input text: ``` system function_setting=functions {"name": "get_current_weather", "description": "Get the latest weather for a location", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "A certain city, such as Beijing, Shanghai"}}, "required": ["location"]}} ``` Important notes: 1. Function definitions are placed after the system settings and before the conversation data 2. Function definitions are marked with `function_setting=functions` 3. Each function is defined as a JSON string 4. The area ends with `` ## 📤 Model Function Call Output When the model decides to call a function, it outputs the function call information in a special format: ```` ```typescript functions.get_current_weather({"location": "Shanghai"}) ``` ```` "" is a special token, followed by "functions.function_name(parameter json structure)". The parameters need to be string-matched and executed externally. ## 📥 Handling Function Results After a function is successfully executed, the model will return output in the following format: ````typescript ```typescript functions.get_current_weather({"location": "Shanghai"}) ``` ```` You can use the following regular expression method to extract the function name and parameters for subsequent processing: ````python def parse_function_calls(content: str): """ Parse the function call content returned by the model, extract function name and parameters Parameters: content: The original content string returned by the model Returns: A dictionary of parsed function call information, including function name and parameters """ # Match typescript code block pattern = r"```typescript\n(.+?)?\n```" matches = re.finditer(pattern, content, re.DOTALL) for match in matches: function_code = match.group(1) # Extract function name and parameters function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code) if not function_match: continue function_name = function_match.group(1) arguments_str = function_match.group(2) try: # Parse parameter JSON arguments = json.loads(arguments_str) print(f"Function call: {function_name}, Parameters: {arguments}") # Example: Handle weather query function if function_name == "get_current_weather": location = arguments.get("location", "Unknown location") # Build function execution result return { "role": "function", "name": function_name, "text": json.dumps({ "location": location, "temperature": "25", "unit": "celsius", "weather": "Sunny" }, ensure_ascii=False) } except json.JSONDecodeError as e: print(f"Parameter parsing failed: {arguments_str}, Error: {e}") return {} ```` After successfully parsing the function call, you should add the function execution result to the conversation history so that the model can access and utilize this information in subsequent interactions. ## 💻 Function Call Example with Transformers Library The official MiniMax-Text-01 repository provides a complete example of function calling using the Transformers library. You can view the source code in the [MiniMaxAI/MiniMax-Text-01 huggingface repository](https://huggingface.co/MiniMaxAI/MiniMax-Text-01/blob/main/main.py). The following is the key part of implementing function calls using the Transformers library: ```python def get_default_tools(): return [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the latest weather for a location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "A certain city, such as Beijing, Shanghai" } }, "required": ["location"] } } } ] # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = "What's the weather like in Shanghai today?" messages = [ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-Text-01 model."}]}, {"role": "user", "content": [{"type": "text", "text": prompt}]}, ] # Enable function call tools tools = get_default_tools() # Apply chat template and add tool definitions text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, tools=tools ) # Generate response model_inputs = tokenizer(text, return_tensors="pt").to("cuda") quantized_model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype="bfloat16", device_map=device_map, quantization_config=quantization_config, trust_remote_code=True, offload_buffers=True, ) generation_config = GenerationConfig( max_new_tokens=20, eos_token_id=200020, use_cache=True, ) # Execute generation generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config) response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### Running the Example You can run the example code using the following command: ```bash export SAFETENSORS_FAST_GPU=1 python main.py --quant_type int8 --world_size 8 --model_id --enable_tools ``` Parameter description: - `--quant_type`: Quantization type, options are "default" or "int8" - `--world_size`: Number of GPUs, int8 quantization requires at least 8 GPUs - `--model_id`: Model path - `--enable_tools`: Enable function call feature ### Result Processing As expected, you will get the following output: ````base ```typescript functions.get_current_weather({"location": "Shanghai"}) ``` ```` You can use regular expressions to extract the function to call and its corresponding parameters: ````python def try_parse_tool_calls(content: str): pattern = r"```typescript\n(.+?)?\n```" matches = re.finditer(pattern, content, re.DOTALL) for match in matches: function_code = match.group(1) function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code) if not function_match: continue function_name = function_match.group(1) arguments_str = function_match.group(2) try: arguments = json.loads(arguments_str) print(f"tool_calls: [{{'type': 'function', 'function': {{'name': '{function_name}', 'arguments': {arguments}}}}}]") if function_name == "get_current_weather": location = arguments.get("location", "Unknown") return {"role": "function", "name": function_name, "text": f'{{"location": "{location}", "temperature": "25", "unit": "celsius", "weather": "Sun"}}'} except json.JSONDecodeError as e: print(f"Failed parse tools: {arguments_str}, Error: {e}") return {} ```` ### Chat Template MiniMax-Text-01 uses a specific chat template format to process function calls. The chat template is defined in `tokenizer_config.json`: ```json "{% for message in messages %}{% if message['role'] == 'system' %}{{ 'system ai_setting=assistant\\n' + message['content'][0]['text'] + '\\n'}}{% elif message['role'] == 'user' %}{{ 'user name=user\\n' + message['content'][0]['text'] + '\\n'}}{% elif message['role'] == 'assistant' %}{{ 'ai name=assistant\\n' }}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{{ '\\n' }}{% elif message['role'] == 'function' %}{{ 'system function_response=functions\\n' + '{\"name\": \"' + message['name'] + '\", \"response\": ' + message['content'][0]['text'] + '}' + '\\n'}}{% endif %}{% endfor %}{% if tools %}{% for function in tools %}{{ 'system function_setting=functions\\n' + function | tojson + '\\n'}}{% endfor %}{% endif %}{% if add_generation_prompt %}{{ 'ai name=assistant\\n' }}{% endif %}" ``` ## 📝 Important Notes 1. Function names should follow programming language naming conventions and avoid special characters 2. Parameter descriptions should be concise and help the model understand the parameter's purpose and constraints 3. The model does not guarantee that it will call a function; this depends on the user's input and the model's judgment 4. Function results should be returned in a structured format for easy processing by the model 5. The model might not call a function even if one is provided, depending on whether it determines a function call is appropriate for the given user query