--- library_name: transformers tags: - unsloth - trl - sft license: mit datasets: - elyza/JaMARD - EleutherAI/hendrycks_math language: - ja - en base_model: - sbintuitions/sarashina2-13b pipeline_tag: text-generation --- # Model Card for Sarashina2-13b-finetuned-v1 🧮📘 A Japanese-English bilingual language model fine-tuned on 100 randomly shuffled samples from math datasets. Based on `sbintuitions/sarashina2-13b` and trained using `unsloth`, `trl`, and `sft`. ## Model Details ### Description 🧠 Fine-tuned transformer model for solving math problems and answering technical questions in 🇯🇵 Japanese and 🇺🇸 English. - **Base Model:** sbintuitions/sarashina2-13b - **License:** MIT - **Languages:** Japanese, English - **Model Type:** Transformer (Causal LM) ## Limitations ⚠️ Known limitations: - May generate incorrect or biased answers - May hallucinate explanations 🔍 Always verify important outputs. ## Get Started ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("Mori-kamiyama/sarashina-13B-finetuned-v1") tokenizer = AutoTokenizer.from_pretrained("Mori-kamiyama/sarashina-13B-finetuned-v1") ``` ## Training Data 🧮 Fine-tuned using 100 randomly shuffled samples from: - `elyza/JaMARD` (Japanese instruction tuning) - `EleutherAI/hendrycks_math` (math reasoning) ## Architecture - Transformer (Causal LM) - Fine-tuned with TRL + Unsloth