Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,882 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: text-generation
|
3 |
+
inference: true
|
4 |
+
widget:
|
5 |
+
- text: 'def print_hello_world():'
|
6 |
+
example_title: Hello world
|
7 |
+
group: Python
|
8 |
+
license: bigscience-openrail-m
|
9 |
+
pretrain-datasets:
|
10 |
+
- books
|
11 |
+
- arxiv
|
12 |
+
- c4
|
13 |
+
- falcon-refinedweb
|
14 |
+
- wiki
|
15 |
+
- github-issues
|
16 |
+
- stack_markdown
|
17 |
+
- self-made dataset of permissive github code
|
18 |
+
datasets:
|
19 |
+
- bigcode/the-stack-dedup
|
20 |
+
- rombodawg/2XUNCENSORED_MegaCodeTraining188k
|
21 |
+
- bigcode/commitpackft
|
22 |
+
metrics:
|
23 |
+
- code_eval
|
24 |
+
library_name: transformers
|
25 |
+
tags:
|
26 |
+
- code
|
27 |
+
model-index:
|
28 |
+
- name: Refact-1.6B
|
29 |
+
results:
|
30 |
+
- task:
|
31 |
+
type: text-generation
|
32 |
+
dataset:
|
33 |
+
type: openai_humaneval
|
34 |
+
name: HumanEval
|
35 |
+
metrics:
|
36 |
+
- name: pass@1 (T=0.01)
|
37 |
+
type: pass@1
|
38 |
+
value: 32.0
|
39 |
+
verified: false
|
40 |
+
- name: pass@1 (T=0.2)
|
41 |
+
type: pass@1
|
42 |
+
value: 31.5
|
43 |
+
verified: false
|
44 |
+
- name: pass@10 (T=0.8)
|
45 |
+
type: pass@10
|
46 |
+
value: 53.0
|
47 |
+
verified: false
|
48 |
+
- name: pass@100 (T=0.8)
|
49 |
+
type: pass@100
|
50 |
+
value: 76.9
|
51 |
+
verified: false
|
52 |
+
- task:
|
53 |
+
type: text-generation
|
54 |
+
dataset:
|
55 |
+
type: bigcode/humanevalpack
|
56 |
+
name: HumanEvalSynthesize Python
|
57 |
+
metrics:
|
58 |
+
- name: pass@1 (T=0.2)
|
59 |
+
type: pass@1
|
60 |
+
value: 35.8
|
61 |
+
verified: false
|
62 |
+
- task:
|
63 |
+
type: text-generation
|
64 |
+
dataset:
|
65 |
+
type: bigcode/humanevalpack
|
66 |
+
name: HumanEvalSynthesize JavaScript
|
67 |
+
metrics:
|
68 |
+
- name: pass@1 (T=0.2)
|
69 |
+
type: pass@1
|
70 |
+
value: 31.6
|
71 |
+
verified: false
|
72 |
+
- task:
|
73 |
+
type: text-generation
|
74 |
+
dataset:
|
75 |
+
type: bigcode/humanevalpack
|
76 |
+
name: HumanEvalSynthesize Java
|
77 |
+
metrics:
|
78 |
+
- name: pass@1 (T=0.2)
|
79 |
+
type: pass@1
|
80 |
+
value: 29.1
|
81 |
+
verified: false
|
82 |
+
- task:
|
83 |
+
type: text-generation
|
84 |
+
dataset:
|
85 |
+
type: bigcode/humanevalpack
|
86 |
+
name: HumanEvalSynthesize Go
|
87 |
+
metrics:
|
88 |
+
- name: pass@1 (T=0.2)
|
89 |
+
type: pass@1
|
90 |
+
value: -1
|
91 |
+
verified: false
|
92 |
+
- task:
|
93 |
+
type: text-generation
|
94 |
+
dataset:
|
95 |
+
type: bigcode/humanevalpack
|
96 |
+
name: HumanEvalSynthesize C++
|
97 |
+
metrics:
|
98 |
+
- name: pass@1 (T=0.2)
|
99 |
+
type: pass@1
|
100 |
+
value: 26.3
|
101 |
+
verified: false
|
102 |
+
- task:
|
103 |
+
type: text-generation
|
104 |
+
dataset:
|
105 |
+
type: bigcode/humanevalpack
|
106 |
+
name: HumanEvalSynthesize Rust
|
107 |
+
metrics:
|
108 |
+
- name: pass@1 (T=0.2)
|
109 |
+
type: pass@1
|
110 |
+
value: -1
|
111 |
+
verified: false
|
112 |
+
- task:
|
113 |
+
type: text-generation
|
114 |
+
dataset:
|
115 |
+
type: bigcode/humanevalpack
|
116 |
+
name: HumanEvalSynthesize Average
|
117 |
+
metrics:
|
118 |
+
- name: pass@1 (T=0.2)
|
119 |
+
type: pass@1
|
120 |
+
value: -1
|
121 |
+
verified: false
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
- task:
|
128 |
+
type: text-generation
|
129 |
+
dataset:
|
130 |
+
type: bigcode/humanevalpack
|
131 |
+
name: HumanEvalFixTests Python
|
132 |
+
metrics:
|
133 |
+
- name: pass@1 (T=0.2)
|
134 |
+
type: pass@1
|
135 |
+
value: 18.38
|
136 |
+
verified: false
|
137 |
+
- task:
|
138 |
+
type: text-generation
|
139 |
+
dataset:
|
140 |
+
type: bigcode/humanevalpack
|
141 |
+
name: HumanEvalFixTests JavaScript
|
142 |
+
metrics:
|
143 |
+
- name: pass@1 (T=0.2)
|
144 |
+
type: pass@1
|
145 |
+
value: 12.28
|
146 |
+
verified: false
|
147 |
+
- task:
|
148 |
+
type: text-generation
|
149 |
+
dataset:
|
150 |
+
type: bigcode/humanevalpack
|
151 |
+
name: HumanEvalFixTests Java
|
152 |
+
metrics:
|
153 |
+
- name: pass@1 (T=0.2)
|
154 |
+
type: pass@1
|
155 |
+
value: 15.12
|
156 |
+
verified: false
|
157 |
+
- task:
|
158 |
+
type: text-generation
|
159 |
+
dataset:
|
160 |
+
type: bigcode/humanevalpack
|
161 |
+
name: HumanEvalFixTests Go
|
162 |
+
metrics:
|
163 |
+
- name: pass@1 (T=0.2)
|
164 |
+
type: pass@1
|
165 |
+
value: -1
|
166 |
+
verified: false
|
167 |
+
- task:
|
168 |
+
type: text-generation
|
169 |
+
dataset:
|
170 |
+
type: bigcode/humanevalpack
|
171 |
+
name: HumanEvalFixTests C++
|
172 |
+
metrics:
|
173 |
+
- name: pass@1 (T=0.2)
|
174 |
+
type: pass@1
|
175 |
+
value: 13.17
|
176 |
+
verified: false
|
177 |
+
- task:
|
178 |
+
type: text-generation
|
179 |
+
dataset:
|
180 |
+
type: bigcode/humanevalpack
|
181 |
+
name: HumanEvalFixTests Rust
|
182 |
+
metrics:
|
183 |
+
- name: pass@1 (T=0.2)
|
184 |
+
type: pass@1
|
185 |
+
value: 2.8
|
186 |
+
verified: false
|
187 |
+
- task:
|
188 |
+
type: text-generation
|
189 |
+
dataset:
|
190 |
+
type: bigcode/humanevalpack
|
191 |
+
name: HumanEvalFixTests Average
|
192 |
+
metrics:
|
193 |
+
- name: pass@1 (T=0.2)
|
194 |
+
type: pass@1
|
195 |
+
value: -1
|
196 |
+
verified: false
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
- task:
|
204 |
+
type: text-generation
|
205 |
+
dataset:
|
206 |
+
type: bigcode/humanevalpack
|
207 |
+
name: HumanEvalFixDocs Python
|
208 |
+
metrics:
|
209 |
+
- name: pass@1 (T=0.2)
|
210 |
+
type: pass@1
|
211 |
+
value: 26.92
|
212 |
+
verified: false
|
213 |
+
- task:
|
214 |
+
type: text-generation
|
215 |
+
dataset:
|
216 |
+
type: bigcode/humanevalpack
|
217 |
+
name: HumanEvalFixDocs JavaScript
|
218 |
+
metrics:
|
219 |
+
- name: pass@1 (T=0.2)
|
220 |
+
type: pass@1
|
221 |
+
value: 26.85
|
222 |
+
verified: false
|
223 |
+
- task:
|
224 |
+
type: text-generation
|
225 |
+
dataset:
|
226 |
+
type: bigcode/humanevalpack
|
227 |
+
name: HumanEvalFixDocs Java
|
228 |
+
metrics:
|
229 |
+
- name: pass@1 (T=0.2)
|
230 |
+
type: pass@1
|
231 |
+
value: 30.76
|
232 |
+
verified: false
|
233 |
+
- task:
|
234 |
+
type: text-generation
|
235 |
+
dataset:
|
236 |
+
type: bigcode/humanevalpack
|
237 |
+
name: HumanEvalFixDocs Go
|
238 |
+
metrics:
|
239 |
+
- name: pass@1 (T=0.2)
|
240 |
+
type: pass@1
|
241 |
+
value: -1
|
242 |
+
verified: false
|
243 |
+
- task:
|
244 |
+
type: text-generation
|
245 |
+
dataset:
|
246 |
+
type: bigcode/humanevalpack
|
247 |
+
name: HumanEvalFixDocs C++
|
248 |
+
metrics:
|
249 |
+
- name: pass@1 (T=0.2)
|
250 |
+
type: pass@1
|
251 |
+
value: 25.94
|
252 |
+
verified: false
|
253 |
+
- task:
|
254 |
+
type: text-generation
|
255 |
+
dataset:
|
256 |
+
type: bigcode/humanevalpack
|
257 |
+
name: HumanEvalFixDocs Rust
|
258 |
+
metrics:
|
259 |
+
- name: pass@1 (T=0.2)
|
260 |
+
type: pass@1
|
261 |
+
value: 8.44
|
262 |
+
verified: false
|
263 |
+
- task:
|
264 |
+
type: text-generation
|
265 |
+
dataset:
|
266 |
+
type: bigcode/humanevalpack
|
267 |
+
name: HumanEvalFixDocs Average
|
268 |
+
metrics:
|
269 |
+
- name: pass@1 (T=0.2)
|
270 |
+
type: pass@1
|
271 |
+
value: -1
|
272 |
+
verified: false
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
- task:
|
278 |
+
type: text-generation
|
279 |
+
dataset:
|
280 |
+
type: bigcode/humanevalpack
|
281 |
+
name: HumanEvalExplain Python
|
282 |
+
metrics:
|
283 |
+
- name: pass@1 (T=0.2)
|
284 |
+
type: pass@1
|
285 |
+
value: 26.46
|
286 |
+
verified: false
|
287 |
+
- task:
|
288 |
+
type: text-generation
|
289 |
+
dataset:
|
290 |
+
type: bigcode/humanevalpack
|
291 |
+
name: HumanEvalExplain JavaScript
|
292 |
+
metrics:
|
293 |
+
- name: pass@1 (T=0.2)
|
294 |
+
type: pass@1
|
295 |
+
value: 17.86
|
296 |
+
verified: false
|
297 |
+
- task:
|
298 |
+
type: text-generation
|
299 |
+
dataset:
|
300 |
+
type: bigcode/humanevalpack
|
301 |
+
name: HumanEvalExplain Java
|
302 |
+
metrics:
|
303 |
+
- name: pass@1 (T=0.2)
|
304 |
+
type: pass@1
|
305 |
+
value: 20.94
|
306 |
+
verified: false
|
307 |
+
- task:
|
308 |
+
type: text-generation
|
309 |
+
dataset:
|
310 |
+
type: bigcode/humanevalpack
|
311 |
+
name: HumanEvalExplain Go
|
312 |
+
metrics:
|
313 |
+
- name: pass@1 (T=0.2)
|
314 |
+
type: pass@1
|
315 |
+
value: -1
|
316 |
+
verified: false
|
317 |
+
- task:
|
318 |
+
type: text-generation
|
319 |
+
dataset:
|
320 |
+
type: bigcode/humanevalpack
|
321 |
+
name: HumanEvalExplain C++
|
322 |
+
metrics:
|
323 |
+
- name: pass@1 (T=0.2)
|
324 |
+
type: pass@1
|
325 |
+
value: 18.78
|
326 |
+
verified: false
|
327 |
+
- task:
|
328 |
+
type: text-generation
|
329 |
+
dataset:
|
330 |
+
type: bigcode/humanevalpack
|
331 |
+
name: HumanEvalExplain Rust
|
332 |
+
metrics:
|
333 |
+
- name: pass@1 (T=0.2)
|
334 |
+
type: pass@1
|
335 |
+
value: -1
|
336 |
+
verified: false
|
337 |
+
- task:
|
338 |
+
type: text-generation
|
339 |
+
dataset:
|
340 |
+
type: bigcode/humanevalpack
|
341 |
+
name: HumanEvalExplain Average
|
342 |
+
metrics:
|
343 |
+
- name: pass@1 (T=0.2)
|
344 |
+
type: pass@1
|
345 |
+
value: -1
|
346 |
+
verified: false
|
347 |
+
|
348 |
+
|
349 |
+
- task:
|
350 |
+
type: text-generation
|
351 |
+
dataset:
|
352 |
+
type: mbpp
|
353 |
+
name: MBPP
|
354 |
+
metrics:
|
355 |
+
- name: pass@1 (T=0.01)
|
356 |
+
type: pass@1
|
357 |
+
value: 31.15
|
358 |
+
verified: false
|
359 |
+
- task:
|
360 |
+
type: text-generation
|
361 |
+
dataset:
|
362 |
+
type: ds1000
|
363 |
+
name: DS-1000 (Overall Completion)
|
364 |
+
metrics:
|
365 |
+
- name: pass@1 (T=0.2)
|
366 |
+
type: pass@1
|
367 |
+
value: 10.1
|
368 |
+
verified: false
|
369 |
+
- task:
|
370 |
+
type: text-generation
|
371 |
+
dataset:
|
372 |
+
type: nuprl/MultiPL-E
|
373 |
+
name: MultiPL-HumanEval (C++)
|
374 |
+
metrics:
|
375 |
+
- name: pass@1 (T=0.2)
|
376 |
+
type: pass@1
|
377 |
+
value: 21.61
|
378 |
+
verified: false
|
379 |
+
- task:
|
380 |
+
type: text-generation
|
381 |
+
dataset:
|
382 |
+
type: nuprl/MultiPL-E
|
383 |
+
name: MultiPL-HumanEval (C#)
|
384 |
+
metrics:
|
385 |
+
- name: pass@1 (T=0.2)
|
386 |
+
type: pass@1
|
387 |
+
value: 13.91
|
388 |
+
verified: false
|
389 |
+
- task:
|
390 |
+
type: text-generation
|
391 |
+
dataset:
|
392 |
+
type: nuprl/MultiPL-E
|
393 |
+
name: MultiPL-HumanEval (D)
|
394 |
+
metrics:
|
395 |
+
- name: pass@1 (T=0.2)
|
396 |
+
type: pass@1
|
397 |
+
value: 9.5
|
398 |
+
verified: false
|
399 |
+
- task:
|
400 |
+
type: text-generation
|
401 |
+
dataset:
|
402 |
+
type: nuprl/MultiPL-E
|
403 |
+
name: MultiPL-HumanEval (Go)
|
404 |
+
metrics:
|
405 |
+
- name: pass@1 (T=0.2)
|
406 |
+
type: pass@1
|
407 |
+
value: 53.57
|
408 |
+
verified: false
|
409 |
+
- task:
|
410 |
+
type: text-generation
|
411 |
+
dataset:
|
412 |
+
type: nuprl/MultiPL-E
|
413 |
+
name: MultiPL-HumanEval (Java)
|
414 |
+
metrics:
|
415 |
+
- name: pass@1 (T=0.2)
|
416 |
+
type: pass@1
|
417 |
+
value: 21.58
|
418 |
+
verified: false
|
419 |
+
- task:
|
420 |
+
type: text-generation
|
421 |
+
dataset:
|
422 |
+
type: nuprl/MultiPL-E
|
423 |
+
name: MultiPL-HumanEval (Julia)
|
424 |
+
metrics:
|
425 |
+
- name: pass@1 (T=0.2)
|
426 |
+
type: pass@1
|
427 |
+
value: 13.75
|
428 |
+
verified: false
|
429 |
+
- task:
|
430 |
+
type: text-generation
|
431 |
+
dataset:
|
432 |
+
type: nuprl/MultiPL-E
|
433 |
+
name: MultiPL-HumanEval (JavaScript)
|
434 |
+
metrics:
|
435 |
+
- name: pass@1 (T=0.2)
|
436 |
+
type: pass@1
|
437 |
+
value: 26.88
|
438 |
+
verified: false
|
439 |
+
- task:
|
440 |
+
type: text-generation
|
441 |
+
dataset:
|
442 |
+
type: nuprl/MultiPL-E
|
443 |
+
name: MultiPL-HumanEval (Lua)
|
444 |
+
metrics:
|
445 |
+
- name: pass@1 (T=0.2)
|
446 |
+
type: pass@1
|
447 |
+
value: 15.26
|
448 |
+
verified: false
|
449 |
+
- task:
|
450 |
+
type: text-generation
|
451 |
+
dataset:
|
452 |
+
type: nuprl/MultiPL-E
|
453 |
+
name: MultiPL-HumanEval (PHP)
|
454 |
+
metrics:
|
455 |
+
- name: pass@1 (T=0.2)
|
456 |
+
type: pass@1
|
457 |
+
value: 23.04
|
458 |
+
verified: false
|
459 |
+
- task:
|
460 |
+
type: text-generation
|
461 |
+
dataset:
|
462 |
+
type: nuprl/MultiPL-E
|
463 |
+
name: MultiPL-HumanEval (Perl)
|
464 |
+
metrics:
|
465 |
+
- name: pass@1 (T=0.2)
|
466 |
+
type: pass@1
|
467 |
+
value: 12.1
|
468 |
+
verified: false
|
469 |
+
- task:
|
470 |
+
type: text-generation
|
471 |
+
dataset:
|
472 |
+
type: nuprl/MultiPL-E
|
473 |
+
name: MultiPL-HumanEval (Python)
|
474 |
+
metrics:
|
475 |
+
- name: pass@1 (T=0.2)
|
476 |
+
type: pass@1
|
477 |
+
value: 29.6
|
478 |
+
verified: false
|
479 |
+
- task:
|
480 |
+
type: text-generation
|
481 |
+
dataset:
|
482 |
+
type: nuprl/MultiPL-E
|
483 |
+
name: MultiPL-HumanEval (R)
|
484 |
+
metrics:
|
485 |
+
- name: pass@1 (T=0.2)
|
486 |
+
type: pass@1
|
487 |
+
value: 13.77
|
488 |
+
verified: false
|
489 |
+
- task:
|
490 |
+
type: text-generation
|
491 |
+
dataset:
|
492 |
+
type: nuprl/MultiPL-E
|
493 |
+
name: MultiPL-HumanEval (Ruby)
|
494 |
+
metrics:
|
495 |
+
- name: pass@1 (T=0.2)
|
496 |
+
type: pass@1
|
497 |
+
value: 12.68
|
498 |
+
verified: false
|
499 |
+
- task:
|
500 |
+
type: text-generation
|
501 |
+
dataset:
|
502 |
+
type: nuprl/MultiPL-E
|
503 |
+
name: MultiPL-HumanEval (Racket)
|
504 |
+
metrics:
|
505 |
+
- name: pass@1 (T=0.2)
|
506 |
+
type: pass@1
|
507 |
+
value: 4.29
|
508 |
+
verified: false
|
509 |
+
- task:
|
510 |
+
type: text-generation
|
511 |
+
dataset:
|
512 |
+
type: nuprl/MultiPL-E
|
513 |
+
name: MultiPL-HumanEval (Rust)
|
514 |
+
metrics:
|
515 |
+
- name: pass@1 (T=0.2)
|
516 |
+
type: pass@1
|
517 |
+
value: 19.54
|
518 |
+
verified: false
|
519 |
+
- task:
|
520 |
+
type: text-generation
|
521 |
+
dataset:
|
522 |
+
type: nuprl/MultiPL-E
|
523 |
+
name: MultiPL-HumanEval (Scala)
|
524 |
+
metrics:
|
525 |
+
- name: pass@1 (T=0.2)
|
526 |
+
type: pass@1
|
527 |
+
value: 18.33
|
528 |
+
verified: false
|
529 |
+
- task:
|
530 |
+
type: text-generation
|
531 |
+
dataset:
|
532 |
+
type: nuprl/MultiPL-E
|
533 |
+
name: MultiPL-HumanEval (Bash)
|
534 |
+
metrics:
|
535 |
+
- name: pass@1 (T=0.2)
|
536 |
+
type: pass@1
|
537 |
+
value: 5.7
|
538 |
+
verified: false
|
539 |
+
- task:
|
540 |
+
type: text-generation
|
541 |
+
dataset:
|
542 |
+
type: nuprl/MultiPL-E
|
543 |
+
name: MultiPL-HumanEval (Swift)
|
544 |
+
metrics:
|
545 |
+
- name: pass@1 (T=0.2)
|
546 |
+
type: pass@1
|
547 |
+
value: 17.68
|
548 |
+
verified: false
|
549 |
+
- task:
|
550 |
+
type: text-generation
|
551 |
+
dataset:
|
552 |
+
type: nuprl/MultiPL-E
|
553 |
+
name: MultiPL-HumanEval (TypeScript)
|
554 |
+
metrics:
|
555 |
+
- name: pass@1 (T=0.2)
|
556 |
+
type: pass@1
|
557 |
+
value: 25
|
558 |
+
verified: false
|
559 |
+
|
560 |
+
language:
|
561 |
+
- en
|
562 |
+
---
|
563 |
+
|
564 |
+
# <span style="color: #7FFF7F;">Refact-1_6B-fim GGUF Models</span>
|
565 |
+
|
566 |
+
## **Choosing the Right Model Format**
|
567 |
+
|
568 |
+
Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.
|
569 |
+
|
570 |
+
### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**
|
571 |
+
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.
|
572 |
+
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.
|
573 |
+
- Recommended if your hardware supports **BF16 acceleration** (check your device’s specs).
|
574 |
+
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.
|
575 |
+
|
576 |
+
📌 **Use BF16 if:**
|
577 |
+
✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).
|
578 |
+
✔ You want **higher precision** while saving memory.
|
579 |
+
✔ You plan to **requantize** the model into another format.
|
580 |
+
|
581 |
+
📌 **Avoid BF16 if:**
|
582 |
+
❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).
|
583 |
+
❌ You need compatibility with older devices that lack BF16 optimization.
|
584 |
+
|
585 |
+
---
|
586 |
+
|
587 |
+
### **F16 (Float 16) – More widely supported than BF16**
|
588 |
+
- A 16-bit floating-point **high precision** but with less of range of values than BF16.
|
589 |
+
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).
|
590 |
+
- Slightly lower numerical precision than BF16 but generally sufficient for inference.
|
591 |
+
|
592 |
+
📌 **Use F16 if:**
|
593 |
+
✔ Your hardware supports **FP16** but **not BF16**.
|
594 |
+
✔ You need a **balance between speed, memory usage, and accuracy**.
|
595 |
+
✔ You are running on a **GPU** or another device optimized for FP16 computations.
|
596 |
+
|
597 |
+
📌 **Avoid F16 if:**
|
598 |
+
❌ Your device lacks **native FP16 support** (it may run slower than expected).
|
599 |
+
❌ You have memory limitations.
|
600 |
+
|
601 |
+
---
|
602 |
+
|
603 |
+
### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**
|
604 |
+
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
|
605 |
+
- **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision.
|
606 |
+
- **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory.
|
607 |
+
|
608 |
+
📌 **Use Quantized Models if:**
|
609 |
+
✔ You are running inference on a **CPU** and need an optimized model.
|
610 |
+
✔ Your device has **low VRAM** and cannot load full-precision models.
|
611 |
+
✔ You want to reduce **memory footprint** while keeping reasonable accuracy.
|
612 |
+
|
613 |
+
📌 **Avoid Quantized Models if:**
|
614 |
+
❌ You need **maximum accuracy** (full-precision models are better for this).
|
615 |
+
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
|
616 |
+
|
617 |
+
---
|
618 |
+
|
619 |
+
### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**
|
620 |
+
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.
|
621 |
+
|
622 |
+
- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.
|
623 |
+
- **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.
|
624 |
+
- **Trade-off**: Lower accuracy compared to higher-bit quantizations.
|
625 |
+
|
626 |
+
- **IQ3_S**: Small block size for **maximum memory efficiency**.
|
627 |
+
- **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.
|
628 |
+
|
629 |
+
- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.
|
630 |
+
- **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.
|
631 |
+
|
632 |
+
- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.
|
633 |
+
- **Use case**: Best for **low-memory devices** where **Q6_K** is too large.
|
634 |
+
|
635 |
+
- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.
|
636 |
+
- **Use case**: Best for **ARM-based devices** or **low-memory environments**.
|
637 |
+
|
638 |
+
---
|
639 |
+
|
640 |
+
### **Summary Table: Model Format Selection**
|
641 |
+
|
642 |
+
| Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
|
643 |
+
|--------------|------------|---------------|----------------------|---------------|
|
644 |
+
| **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
|
645 |
+
| **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn’t available |
|
646 |
+
| **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
|
647 |
+
| **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
|
648 |
+
| **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
|
649 |
+
| **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
|
650 |
+
| **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
|
651 |
+
|
652 |
+
---
|
653 |
+
|
654 |
+
## **Included Files & Details**
|
655 |
+
|
656 |
+
### `Refact-1_6B-fim-bf16.gguf`
|
657 |
+
- Model weights preserved in **BF16**.
|
658 |
+
- Use this if you want to **requantize** the model into a different format.
|
659 |
+
- Best if your device supports **BF16 acceleration**.
|
660 |
+
|
661 |
+
### `Refact-1_6B-fim-f16.gguf`
|
662 |
+
- Model weights stored in **F16**.
|
663 |
+
- Use if your device supports **FP16**, especially if BF16 is not available.
|
664 |
+
|
665 |
+
### `Refact-1_6B-fim-bf16-q8_0.gguf`
|
666 |
+
- **Output & embeddings** remain in **BF16**.
|
667 |
+
- All other layers quantized to **Q8_0**.
|
668 |
+
- Use if your device supports **BF16** and you want a quantized version.
|
669 |
+
|
670 |
+
### `Refact-1_6B-fim-f16-q8_0.gguf`
|
671 |
+
- **Output & embeddings** remain in **F16**.
|
672 |
+
- All other layers quantized to **Q8_0**.
|
673 |
+
|
674 |
+
### `Refact-1_6B-fim-q4_k.gguf`
|
675 |
+
- **Output & embeddings** quantized to **Q8_0**.
|
676 |
+
- All other layers quantized to **Q4_K**.
|
677 |
+
- Good for **CPU inference** with limited memory.
|
678 |
+
|
679 |
+
### `Refact-1_6B-fim-q4_k_s.gguf`
|
680 |
+
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.
|
681 |
+
- Best for **very low-memory setups**.
|
682 |
+
|
683 |
+
### `Refact-1_6B-fim-q6_k.gguf`
|
684 |
+
- **Output & embeddings** quantized to **Q8_0**.
|
685 |
+
- All other layers quantized to **Q6_K** .
|
686 |
+
|
687 |
+
### `Refact-1_6B-fim-q8_0.gguf`
|
688 |
+
- Fully **Q8** quantized model for better accuracy.
|
689 |
+
- Requires **more memory** but offers higher precision.
|
690 |
+
|
691 |
+
### `Refact-1_6B-fim-iq3_xs.gguf`
|
692 |
+
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.
|
693 |
+
- Best for **ultra-low-memory devices**.
|
694 |
+
|
695 |
+
### `Refact-1_6B-fim-iq3_m.gguf`
|
696 |
+
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.
|
697 |
+
- Suitable for **low-memory devices**.
|
698 |
+
|
699 |
+
### `Refact-1_6B-fim-q4_0.gguf`
|
700 |
+
- Pure **Q4_0** quantization, optimized for **ARM devices**.
|
701 |
+
- Best for **low-memory environments**.
|
702 |
+
- Prefer IQ4_NL for better accuracy.
|
703 |
+
|
704 |
+
# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
|
705 |
+
|
706 |
+
Please click like ❤ . Also I’d really appreciate it if you could test my Network Monitor Assistant at 👉 [Network Monitor Assitant](https://freenetworkmonitor.click/dashboard).
|
707 |
+
|
708 |
+
💬 Click the **chat icon** (bottom right of the main and dashboard pages) . Choose a LLM; toggle between the LLM Types TurboLLM -> FreeLLM -> TestLLM.
|
709 |
+
|
710 |
+
### What I'm Testing
|
711 |
+
|
712 |
+
I'm experimenting with **function calling** against my network monitoring service. Using small open source models. I am into the question "How small can it go and still function".
|
713 |
+
|
714 |
+
🟡 **TestLLM** – Runs the current testing model using llama.cpp on 6 threads of a Cpu VM (Should take about 15s to load. Inference speed is quite slow and it only processes one user prompt at a time—still working on scaling!). If you're curious, I'd be happy to share how it works! .
|
715 |
+
|
716 |
+
### The other Available AI Assistants
|
717 |
+
|
718 |
+
🟢 **TurboLLM** – Uses **gpt-4o-mini** Fast! . Note: tokens are limited since OpenAI models are pricey, but you can [Login](https://freenetworkmonitor.click) or [Download](https://freenetworkmonitor.click/download) the Free Network Monitor agent to get more tokens, Alternatively use the FreeLLM .
|
719 |
+
|
720 |
+
🔵 **FreeLLM** – Runs **open-source Hugging Face models** Medium speed (unlimited, subject to Hugging Face API availability).
|
721 |
+
|
722 |
+
|
723 |
+
|
724 |
+
|
725 |
+

|
726 |
+
|
727 |
+
|
728 |
+
# Refact-1.6B
|
729 |
+
|
730 |
+
Finally, the model we started training with our [blog post](https://refact.ai/blog/2023/applying-recent-innovations-to-train-model/) is ready 🎉
|
731 |
+
|
732 |
+
After fine-tuning on generated data, it beats Replit 3b, Stability Code 3b and many other models. It almost beats
|
733 |
+
StarCoder ten times the size!
|
734 |
+
|
735 |
+
|
736 |
+
Model | Size | HumanEval pass@1 | HumanEval pass@10 |
|
737 |
+
----------------------|---------------|--------------------|--------------------|
|
738 |
+
DeciCoder-1b | 1b | 19.1% | |
|
739 |
+
<b>Refact-1.6-fim</b> | <b>1.6b</b> | <b>32.0%</b> | <b>53.0%</b> |
|
740 |
+
StableCode | 3b | 20.2% | 33.8% |
|
741 |
+
ReplitCode v1 | 3b | 21.9% | |
|
742 |
+
CodeGen2.5-multi | 7b | 28.4% | 47.5% |
|
743 |
+
CodeLlama | 7b | 33.5% | 59.6% |
|
744 |
+
StarCoder | 15b | 33.6% | |
|
745 |
+
|
746 |
+
Likely, it's the best model for practical use in your IDE for code completion because it's smart and fast!
|
747 |
+
You can start using it right now by downloading the
|
748 |
+
[Refact plugin](https://refact.ai/). You can host the model yourself, too, using the
|
749 |
+
[open source docker container](https://github.com/smallcloudai/refact).
|
750 |
+
|
751 |
+
And it's multi-language (see MultiPL-HumanEval and other metrics below) and it works as a chat (see the section below).
|
752 |
+
|
753 |
+
# It Works As a Chat
|
754 |
+
|
755 |
+
The primary application of this model is code completion (infill) in multiple programming languages.
|
756 |
+
But it works as a chat quite well.
|
757 |
+
|
758 |
+
HumanEval results using instruction following (chat) format, against models specialized for chat only:
|
759 |
+
|
760 |
+
Model | Size | pass@1 | pass@10 |
|
761 |
+
-----------------------|--------|----------|----------|
|
762 |
+
<b>Refact-1.6-fim</b> | 1.6b | 38.4% | 55.6% |
|
763 |
+
StableCode-instruct | 3b | 26.9% | 36.2% |
|
764 |
+
OctoGeeX | 6b | 44.7% | |
|
765 |
+
CodeLlama-instruct | 7b | 34.8% | 64.3% |
|
766 |
+
CodeGen2.5-instruct | 7b | 36.2% | 60.87 |
|
767 |
+
CodeLlama-instruct | 13b | 42.7% | 71.6% |
|
768 |
+
StarChat-β | 15b | 33.5% | |
|
769 |
+
OctoCoder | 15b | 46.2% | |
|
770 |
+
|
771 |
+
|
772 |
+
# Example
|
773 |
+
|
774 |
+
Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
|
775 |
+
|
776 |
+
```python
|
777 |
+
# pip install -q transformers
|
778 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
779 |
+
|
780 |
+
checkpoint = "smallcloudai/Refact-1_6B-fim"
|
781 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
782 |
+
|
783 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
784 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to(device)
|
785 |
+
|
786 |
+
prompt = '<fim_prefix>def print_hello_world():\n """<fim_suffix>\n print("Hello world!")<fim_middle>'
|
787 |
+
|
788 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
789 |
+
outputs = model.generate(inputs, max_length=100, temperature=0.2)
|
790 |
+
print("-"*80)
|
791 |
+
print(tokenizer.decode(outputs[0]))
|
792 |
+
```
|
793 |
+
|
794 |
+
# Chat Format
|
795 |
+
|
796 |
+
The same model works as chat (experimental).
|
797 |
+
|
798 |
+
```python
|
799 |
+
prompt_template = "<empty_output>SYSTEM {system}\n" \
|
800 |
+
"<empty_output>USER {query}\n" \
|
801 |
+
"<empty_output>ASSISTANT"
|
802 |
+
prompt = prompt_template.format(system="You are a programming assistant",
|
803 |
+
query="How do I sort a list in Python?")
|
804 |
+
```
|
805 |
+
|
806 |
+
# Architecture
|
807 |
+
|
808 |
+
As described in more detail in the blog post, we used:
|
809 |
+
|
810 |
+
- [ALiBi](https://arxiv.org/abs/2108.12409) based attention
|
811 |
+
- [LayerNorm](https://arxiv.org/abs/1607.06450v1) instead of [RMSNorm](https://arxiv.org/pdf/1910.07467.pdf)
|
812 |
+
- [Multi Query Attention](https://arxiv.org/abs/1911.02150)
|
813 |
+
|
814 |
+
We also used LiON, flash attention, early dropout. It's not that innovative that you can't run it, in fact you can -- see an example below.
|
815 |
+
|
816 |
+
|
817 |
+
# Pretraining
|
818 |
+
|
819 |
+
For the base model, we used our own dataset that contains code with permissive licenses only, and open text datasets.
|
820 |
+
Filtering is the key to success of this model:
|
821 |
+
|
822 |
+
- We only used text in English
|
823 |
+
- Only topics related to computer science
|
824 |
+
- Applied heavy deduplication
|
825 |
+
|
826 |
+
The text to code proportion was 50:50, model trained for 1.2T tokens.
|
827 |
+
|
828 |
+
We don't release the base model, because its Fill-in-the-Middle (FIM) capability likes to repeat itself too much, so
|
829 |
+
its practical use is limited. But if you still want it, write us a message on Discord.
|
830 |
+
|
831 |
+
|
832 |
+
# Finetuning
|
833 |
+
|
834 |
+
We tested our hypothesis that chat data should boost base model performance in FIM and
|
835 |
+
regular left-to-right code completion. We found that just 15% of open
|
836 |
+
[code](https://huggingface.co/datasets/bigcode/commitpackft)
|
837 |
+
[instruction-following](https://huggingface.co/datasets/rombodawg/2XUNCENSORED_MegaCodeTraining188k) datasets,
|
838 |
+
that we filtered for quality, improves almost all metrics.
|
839 |
+
|
840 |
+
Additionally, to improve FIM, we observed common failure modes, and prepared a synthetic dataset based on
|
841 |
+
[The Stack dedup v1.1](https://huggingface.co/datasets/bigcode/the-stack-dedup) to address them.
|
842 |
+
|
843 |
+
There is a distribution shift between typical code on the internet, and the code you write in your IDE.
|
844 |
+
The former is likely finished, so the model tries to come up with a suggestion that makes the code complete.
|
845 |
+
You are likely to have half-written code as you work on it, there is no single addition that can repair it
|
846 |
+
fully.
|
847 |
+
|
848 |
+
In practice, model needs to have a tendency to stop after a couple of lines are added, and sometimes don't write
|
849 |
+
anything at all. We found that just giving it empty completions, single line completions, multiline
|
850 |
+
completions that end with a smaller text indent or at least a newline -- makes it much more usable. This data
|
851 |
+
was used as the rest 85% of the finetune dataset.
|
852 |
+
|
853 |
+
The final model is the result of several attempts to make it work as good as possible for code completion,
|
854 |
+
and to perform well on a wide range of metrics. The best attempt took 40B tokens.
|
855 |
+
|
856 |
+
|
857 |
+
# Limitations and Bias
|
858 |
+
|
859 |
+
The Refact-1.6B model was trained on text in English. But it has seen a lot more languages in
|
860 |
+
code comments. Its performance on non-English languages is lower, for sure.
|
861 |
+
|
862 |
+
|
863 |
+
# Model Stats
|
864 |
+
|
865 |
+
- **Architecture:** LLAMA-like model with multi-query attention
|
866 |
+
- **Objectives** Fill-in-the-Middle, Chat
|
867 |
+
- **Tokens context:** 4096
|
868 |
+
- **Pretraining tokens:** 1.2T
|
869 |
+
- **Finetuning tokens:** 40B
|
870 |
+
- **Precision:** bfloat16
|
871 |
+
- **GPUs** 64 NVidia A5000
|
872 |
+
- **Training time** 28 days
|
873 |
+
|
874 |
+
|
875 |
+
# License
|
876 |
+
|
877 |
+
The model is licensed under the BigScience OpenRAIL-M v1 license agreement
|
878 |
+
|
879 |
+
|
880 |
+
# Citation
|
881 |
+
|
882 |
+
If you are using this model, please give a link to this page.
|