End of training
Browse files- README.md +92 -199
- config.json +82 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,92 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/mit-b3
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
- image-segmentation
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: segformer-b0-finetuned-morphpadver1-hgo-coord-v3_1
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# segformer-b0-finetuned-morphpadver1-hgo-coord-v3_1
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [nvidia/mit-b3](https://huggingface.co/nvidia/mit-b3) on the NICOPOI-9/morphpad_coord_hgo_512_4class_v2 dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0117
|
22 |
+
- Mean Iou: 0.9981
|
23 |
+
- Mean Accuracy: 0.9990
|
24 |
+
- Overall Accuracy: 0.9990
|
25 |
+
- Accuracy 0-0: 0.9995
|
26 |
+
- Accuracy 0-90: 0.9985
|
27 |
+
- Accuracy 90-0: 0.9988
|
28 |
+
- Accuracy 90-90: 0.9993
|
29 |
+
- Iou 0-0: 0.9991
|
30 |
+
- Iou 0-90: 0.9979
|
31 |
+
- Iou 90-0: 0.9976
|
32 |
+
- Iou 90-90: 0.9978
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 6e-05
|
52 |
+
- train_batch_size: 1
|
53 |
+
- eval_batch_size: 1
|
54 |
+
- seed: 42
|
55 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 60
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
|
62 |
+
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:-------------:|:-------------:|:--------------:|:-------:|:--------:|:--------:|:---------:|
|
63 |
+
| 0.903 | 2.6525 | 4000 | 0.8952 | 0.3916 | 0.5570 | 0.5567 | 0.5335 | 0.6125 | 0.4890 | 0.5929 | 0.4534 | 0.3418 | 0.3411 | 0.4299 |
|
64 |
+
| 0.6373 | 5.3050 | 8000 | 0.5078 | 0.6237 | 0.7643 | 0.7643 | 0.7676 | 0.8339 | 0.6741 | 0.7817 | 0.6758 | 0.5472 | 0.6022 | 0.6698 |
|
65 |
+
| 0.2851 | 7.9576 | 12000 | 0.2955 | 0.7612 | 0.8642 | 0.8642 | 0.8669 | 0.8687 | 0.8339 | 0.8874 | 0.7959 | 0.7358 | 0.7500 | 0.7631 |
|
66 |
+
| 0.2309 | 10.6101 | 16000 | 0.1305 | 0.9184 | 0.9574 | 0.9574 | 0.9575 | 0.9381 | 0.9648 | 0.9692 | 0.9333 | 0.9074 | 0.8991 | 0.9337 |
|
67 |
+
| 0.0907 | 13.2626 | 20000 | 0.1249 | 0.9267 | 0.9620 | 0.9620 | 0.9636 | 0.9541 | 0.9594 | 0.9708 | 0.9379 | 0.9205 | 0.9169 | 0.9316 |
|
68 |
+
| 0.3051 | 15.9151 | 24000 | 0.0529 | 0.9675 | 0.9835 | 0.9835 | 0.9842 | 0.9805 | 0.9839 | 0.9854 | 0.9712 | 0.9636 | 0.9626 | 0.9728 |
|
69 |
+
| 0.0659 | 18.5676 | 28000 | 0.0630 | 0.9670 | 0.9832 | 0.9833 | 0.9852 | 0.9747 | 0.9885 | 0.9846 | 0.9719 | 0.9642 | 0.9633 | 0.9687 |
|
70 |
+
| 0.0474 | 21.2202 | 32000 | 0.0454 | 0.9768 | 0.9882 | 0.9883 | 0.9910 | 0.9856 | 0.9865 | 0.9899 | 0.9783 | 0.9737 | 0.9747 | 0.9805 |
|
71 |
+
| 0.0449 | 23.8727 | 36000 | 0.0468 | 0.9795 | 0.9896 | 0.9896 | 0.9900 | 0.9812 | 0.9900 | 0.9973 | 0.9828 | 0.9743 | 0.9783 | 0.9824 |
|
72 |
+
| 0.0552 | 26.5252 | 40000 | 0.0266 | 0.9884 | 0.9942 | 0.9942 | 0.9949 | 0.9917 | 0.9947 | 0.9953 | 0.9888 | 0.9865 | 0.9866 | 0.9916 |
|
73 |
+
| 0.0541 | 29.1777 | 44000 | 0.0290 | 0.9908 | 0.9954 | 0.9954 | 0.9951 | 0.9951 | 0.9967 | 0.9946 | 0.9921 | 0.9897 | 0.9905 | 0.9909 |
|
74 |
+
| 0.0082 | 31.8302 | 48000 | 0.0421 | 0.9891 | 0.9945 | 0.9945 | 0.9940 | 0.9924 | 0.9951 | 0.9966 | 0.9908 | 0.9869 | 0.9884 | 0.9904 |
|
75 |
+
| 0.0061 | 34.4828 | 52000 | 0.0345 | 0.9923 | 0.9961 | 0.9961 | 0.9971 | 0.9941 | 0.9966 | 0.9966 | 0.9939 | 0.9912 | 0.9916 | 0.9922 |
|
76 |
+
| 0.0053 | 37.1353 | 56000 | 0.0256 | 0.9941 | 0.9970 | 0.9970 | 0.9976 | 0.9972 | 0.9966 | 0.9968 | 0.9957 | 0.9928 | 0.9929 | 0.9949 |
|
77 |
+
| 0.0045 | 39.7878 | 60000 | 0.0256 | 0.9937 | 0.9968 | 0.9968 | 0.9978 | 0.9959 | 0.9959 | 0.9978 | 0.9937 | 0.9927 | 0.9926 | 0.9957 |
|
78 |
+
| 0.0046 | 42.4403 | 64000 | 0.0171 | 0.9964 | 0.9982 | 0.9982 | 0.9983 | 0.9976 | 0.9987 | 0.9981 | 0.9972 | 0.9958 | 0.9955 | 0.9969 |
|
79 |
+
| 0.0032 | 45.0928 | 68000 | 0.0293 | 0.9957 | 0.9979 | 0.9979 | 0.9983 | 0.9969 | 0.9975 | 0.9988 | 0.9966 | 0.9950 | 0.9950 | 0.9964 |
|
80 |
+
| 0.003 | 47.7454 | 72000 | 0.0251 | 0.9964 | 0.9982 | 0.9982 | 0.9984 | 0.9973 | 0.9984 | 0.9987 | 0.9973 | 0.9952 | 0.9965 | 0.9966 |
|
81 |
+
| 0.0035 | 50.3979 | 76000 | 0.0245 | 0.9973 | 0.9986 | 0.9986 | 0.9993 | 0.9982 | 0.9983 | 0.9987 | 0.9982 | 0.9969 | 0.9963 | 0.9977 |
|
82 |
+
| 0.0025 | 53.0504 | 80000 | 0.0222 | 0.9972 | 0.9986 | 0.9986 | 0.9990 | 0.9980 | 0.9987 | 0.9986 | 0.9985 | 0.9965 | 0.9970 | 0.9968 |
|
83 |
+
| 0.0023 | 55.7029 | 84000 | 0.0104 | 0.9982 | 0.9991 | 0.9991 | 0.9994 | 0.9989 | 0.9987 | 0.9993 | 0.9988 | 0.9980 | 0.9975 | 0.9983 |
|
84 |
+
| 0.0022 | 58.3554 | 88000 | 0.0117 | 0.9981 | 0.9990 | 0.9990 | 0.9995 | 0.9985 | 0.9988 | 0.9993 | 0.9991 | 0.9979 | 0.9976 | 0.9978 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.48.3
|
90 |
+
- Pytorch 2.1.0
|
91 |
+
- Datasets 3.2.0
|
92 |
+
- Tokenizers 0.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b3",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
4,
|
12 |
+
18,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "0-0",
|
32 |
+
"1": "0-90",
|
33 |
+
"2": "90-0",
|
34 |
+
"3": "90-90"
|
35 |
+
},
|
36 |
+
"image_size": 224,
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"label2id": {
|
39 |
+
"0-0": 0,
|
40 |
+
"0-90": 1,
|
41 |
+
"90-0": 2,
|
42 |
+
"90-90": 3
|
43 |
+
},
|
44 |
+
"layer_norm_eps": 1e-06,
|
45 |
+
"mlp_ratios": [
|
46 |
+
4,
|
47 |
+
4,
|
48 |
+
4,
|
49 |
+
4
|
50 |
+
],
|
51 |
+
"model_type": "segformer",
|
52 |
+
"num_attention_heads": [
|
53 |
+
1,
|
54 |
+
2,
|
55 |
+
5,
|
56 |
+
8
|
57 |
+
],
|
58 |
+
"num_channels": 3,
|
59 |
+
"num_encoder_blocks": 4,
|
60 |
+
"patch_sizes": [
|
61 |
+
7,
|
62 |
+
3,
|
63 |
+
3,
|
64 |
+
3
|
65 |
+
],
|
66 |
+
"reshape_last_stage": true,
|
67 |
+
"semantic_loss_ignore_index": 255,
|
68 |
+
"sr_ratios": [
|
69 |
+
8,
|
70 |
+
4,
|
71 |
+
2,
|
72 |
+
1
|
73 |
+
],
|
74 |
+
"strides": [
|
75 |
+
4,
|
76 |
+
2,
|
77 |
+
2,
|
78 |
+
2
|
79 |
+
],
|
80 |
+
"torch_dtype": "float32",
|
81 |
+
"transformers_version": "4.48.3"
|
82 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d263f2677d85222c4d8a543cdcae0350cce2da771963730d8fa68a931939f9e7
|
3 |
+
size 188985928
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c384bdc5a77246365368e355470ae86f16dfd1a5d326e80fc500da37d42f5f82
|
3 |
+
size 5432
|