End of training
Browse files- README.md +101 -199
- config.json +82 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,101 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/mit-b0
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
- image-segmentation
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: segformer-b0-finetuned-morphpadver1-hgo-coord
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# segformer-b0-finetuned-morphpadver1-hgo-coord
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the NICOPOI-9/morphpad_coord_hgo_512_4class dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0306
|
22 |
+
- Mean Iou: 0.9858
|
23 |
+
- Mean Accuracy: 0.9928
|
24 |
+
- Overall Accuracy: 0.9928
|
25 |
+
- Accuracy 0-0: 0.9933
|
26 |
+
- Accuracy 0-90: 0.9937
|
27 |
+
- Accuracy 90-0: 0.9943
|
28 |
+
- Accuracy 90-90: 0.9898
|
29 |
+
- Iou 0-0: 0.9885
|
30 |
+
- Iou 0-90: 0.9850
|
31 |
+
- Iou 90-0: 0.9826
|
32 |
+
- Iou 90-90: 0.9872
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 6e-05
|
52 |
+
- train_batch_size: 1
|
53 |
+
- eval_batch_size: 1
|
54 |
+
- seed: 42
|
55 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 80
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
|
62 |
+
|:-------------:|:-------:|:------:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:-------------:|:-------------:|:--------------:|:-------:|:--------:|:--------:|:---------:|
|
63 |
+
| 1.2185 | 2.5445 | 4000 | 1.2349 | 0.2290 | 0.3745 | 0.3762 | 0.2785 | 0.4062 | 0.4936 | 0.3198 | 0.2085 | 0.2334 | 0.2525 | 0.2216 |
|
64 |
+
| 1.0978 | 5.0891 | 8000 | 1.1020 | 0.2905 | 0.4487 | 0.4508 | 0.3780 | 0.5302 | 0.5341 | 0.3524 | 0.2937 | 0.2870 | 0.2991 | 0.2822 |
|
65 |
+
| 0.9886 | 7.6336 | 12000 | 1.0139 | 0.3231 | 0.4871 | 0.4896 | 0.4154 | 0.4500 | 0.7245 | 0.3585 | 0.3291 | 0.3272 | 0.3266 | 0.3096 |
|
66 |
+
| 0.9358 | 10.1781 | 16000 | 0.9575 | 0.3517 | 0.5195 | 0.5215 | 0.3765 | 0.6411 | 0.5865 | 0.4740 | 0.3438 | 0.3539 | 0.3617 | 0.3473 |
|
67 |
+
| 0.8735 | 12.7226 | 20000 | 0.8853 | 0.4007 | 0.5704 | 0.5726 | 0.4998 | 0.5637 | 0.7536 | 0.4647 | 0.4109 | 0.3953 | 0.4055 | 0.3913 |
|
68 |
+
| 0.7186 | 15.2672 | 24000 | 0.6833 | 0.5558 | 0.7151 | 0.7141 | 0.7389 | 0.6650 | 0.6919 | 0.7647 | 0.5919 | 0.5261 | 0.5453 | 0.5598 |
|
69 |
+
| 0.6514 | 17.8117 | 28000 | 0.4379 | 0.7017 | 0.8243 | 0.8243 | 0.8344 | 0.8161 | 0.8279 | 0.8187 | 0.7198 | 0.6807 | 0.6933 | 0.7130 |
|
70 |
+
| 0.603 | 20.3562 | 32000 | 0.2900 | 0.7980 | 0.8879 | 0.8874 | 0.9117 | 0.8490 | 0.8888 | 0.9020 | 0.8160 | 0.7726 | 0.7893 | 0.8142 |
|
71 |
+
| 0.2448 | 22.9008 | 36000 | 0.2154 | 0.8496 | 0.9184 | 0.9185 | 0.9330 | 0.9179 | 0.9170 | 0.9058 | 0.8683 | 0.8329 | 0.8445 | 0.8527 |
|
72 |
+
| 0.2766 | 25.4453 | 40000 | 0.2004 | 0.8612 | 0.9254 | 0.9254 | 0.9487 | 0.9059 | 0.9381 | 0.9088 | 0.8717 | 0.8469 | 0.8635 | 0.8628 |
|
73 |
+
| 0.6278 | 27.9898 | 44000 | 0.1410 | 0.8976 | 0.9459 | 0.9459 | 0.9426 | 0.9377 | 0.9559 | 0.9474 | 0.9075 | 0.8863 | 0.8932 | 0.9034 |
|
74 |
+
| 0.1684 | 30.5344 | 48000 | 0.1163 | 0.9137 | 0.9549 | 0.9548 | 0.9595 | 0.9417 | 0.9579 | 0.9605 | 0.9245 | 0.9046 | 0.9069 | 0.9187 |
|
75 |
+
| 0.0638 | 33.0789 | 52000 | 0.0927 | 0.9338 | 0.9657 | 0.9657 | 0.9697 | 0.9589 | 0.9715 | 0.9627 | 0.9406 | 0.9291 | 0.9291 | 0.9363 |
|
76 |
+
| 0.0749 | 35.6234 | 56000 | 0.0836 | 0.9382 | 0.9680 | 0.9680 | 0.9714 | 0.9663 | 0.9680 | 0.9664 | 0.9449 | 0.9325 | 0.9339 | 0.9414 |
|
77 |
+
| 0.045 | 38.1679 | 60000 | 0.0624 | 0.9545 | 0.9767 | 0.9767 | 0.9787 | 0.9751 | 0.9763 | 0.9766 | 0.9587 | 0.9521 | 0.9499 | 0.9573 |
|
78 |
+
| 0.1278 | 40.7125 | 64000 | 0.0635 | 0.9546 | 0.9767 | 0.9767 | 0.9773 | 0.9743 | 0.9813 | 0.9737 | 0.9598 | 0.9521 | 0.9492 | 0.9572 |
|
79 |
+
| 0.0443 | 43.2570 | 68000 | 0.0598 | 0.9584 | 0.9787 | 0.9787 | 0.9815 | 0.9723 | 0.9858 | 0.9752 | 0.9624 | 0.9548 | 0.9548 | 0.9617 |
|
80 |
+
| 0.0337 | 45.8015 | 72000 | 0.0549 | 0.9622 | 0.9807 | 0.9807 | 0.9877 | 0.9804 | 0.9820 | 0.9726 | 0.9648 | 0.9587 | 0.9622 | 0.9632 |
|
81 |
+
| 0.0434 | 48.3461 | 76000 | 0.0539 | 0.9643 | 0.9816 | 0.9817 | 0.9793 | 0.9779 | 0.9913 | 0.9781 | 0.9691 | 0.9611 | 0.9565 | 0.9703 |
|
82 |
+
| 0.1576 | 50.8906 | 80000 | 0.0577 | 0.9656 | 0.9825 | 0.9825 | 0.9799 | 0.9822 | 0.9825 | 0.9856 | 0.9694 | 0.9634 | 0.9653 | 0.9645 |
|
83 |
+
| 0.025 | 53.4351 | 84000 | 0.0453 | 0.9724 | 0.9860 | 0.9860 | 0.9856 | 0.9884 | 0.9840 | 0.9858 | 0.9762 | 0.9698 | 0.9697 | 0.9739 |
|
84 |
+
| 0.0318 | 55.9796 | 88000 | 0.0401 | 0.9733 | 0.9865 | 0.9865 | 0.9884 | 0.9845 | 0.9865 | 0.9865 | 0.9766 | 0.9700 | 0.9714 | 0.9753 |
|
85 |
+
| 0.1355 | 58.5242 | 92000 | 0.0453 | 0.9764 | 0.9880 | 0.9880 | 0.9896 | 0.9874 | 0.9889 | 0.9861 | 0.9796 | 0.9742 | 0.9731 | 0.9786 |
|
86 |
+
| 0.0256 | 61.0687 | 96000 | 0.0359 | 0.9817 | 0.9907 | 0.9908 | 0.9902 | 0.9925 | 0.9902 | 0.9901 | 0.9846 | 0.9808 | 0.9783 | 0.9833 |
|
87 |
+
| 0.019 | 63.6132 | 100000 | 0.0320 | 0.9819 | 0.9908 | 0.9909 | 0.9914 | 0.9908 | 0.9936 | 0.9875 | 0.9838 | 0.9812 | 0.9787 | 0.9841 |
|
88 |
+
| 0.0713 | 66.1578 | 104000 | 0.0319 | 0.9827 | 0.9912 | 0.9912 | 0.9940 | 0.9922 | 0.9937 | 0.9847 | 0.9859 | 0.9812 | 0.9807 | 0.9828 |
|
89 |
+
| 0.1036 | 68.7023 | 108000 | 0.0369 | 0.9807 | 0.9902 | 0.9903 | 0.9932 | 0.9916 | 0.9946 | 0.9813 | 0.9844 | 0.9807 | 0.9790 | 0.9788 |
|
90 |
+
| 0.0575 | 71.2468 | 112000 | 0.0338 | 0.9843 | 0.9921 | 0.9921 | 0.9939 | 0.9913 | 0.9929 | 0.9901 | 0.9870 | 0.9822 | 0.9814 | 0.9867 |
|
91 |
+
| 0.0136 | 73.7913 | 116000 | 0.0259 | 0.9870 | 0.9934 | 0.9934 | 0.9926 | 0.9936 | 0.9946 | 0.9930 | 0.9889 | 0.9852 | 0.9850 | 0.9891 |
|
92 |
+
| 0.045 | 76.3359 | 120000 | 0.0310 | 0.9844 | 0.9921 | 0.9921 | 0.9913 | 0.9926 | 0.9941 | 0.9902 | 0.9866 | 0.9834 | 0.9805 | 0.9871 |
|
93 |
+
| 0.6665 | 78.8804 | 124000 | 0.0306 | 0.9858 | 0.9928 | 0.9928 | 0.9933 | 0.9937 | 0.9943 | 0.9898 | 0.9885 | 0.9850 | 0.9826 | 0.9872 |
|
94 |
+
|
95 |
+
|
96 |
+
### Framework versions
|
97 |
+
|
98 |
+
- Transformers 4.48.3
|
99 |
+
- Pytorch 2.1.0
|
100 |
+
- Datasets 3.2.0
|
101 |
+
- Tokenizers 0.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b0",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
32,
|
26 |
+
64,
|
27 |
+
160,
|
28 |
+
256
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "0-0",
|
32 |
+
"1": "0-90",
|
33 |
+
"2": "90-0",
|
34 |
+
"3": "90-90"
|
35 |
+
},
|
36 |
+
"image_size": 224,
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"label2id": {
|
39 |
+
"0-0": 0,
|
40 |
+
"0-90": 1,
|
41 |
+
"90-0": 2,
|
42 |
+
"90-90": 3
|
43 |
+
},
|
44 |
+
"layer_norm_eps": 1e-06,
|
45 |
+
"mlp_ratios": [
|
46 |
+
4,
|
47 |
+
4,
|
48 |
+
4,
|
49 |
+
4
|
50 |
+
],
|
51 |
+
"model_type": "segformer",
|
52 |
+
"num_attention_heads": [
|
53 |
+
1,
|
54 |
+
2,
|
55 |
+
5,
|
56 |
+
8
|
57 |
+
],
|
58 |
+
"num_channels": 3,
|
59 |
+
"num_encoder_blocks": 4,
|
60 |
+
"patch_sizes": [
|
61 |
+
7,
|
62 |
+
3,
|
63 |
+
3,
|
64 |
+
3
|
65 |
+
],
|
66 |
+
"reshape_last_stage": true,
|
67 |
+
"semantic_loss_ignore_index": 255,
|
68 |
+
"sr_ratios": [
|
69 |
+
8,
|
70 |
+
4,
|
71 |
+
2,
|
72 |
+
1
|
73 |
+
],
|
74 |
+
"strides": [
|
75 |
+
4,
|
76 |
+
2,
|
77 |
+
2,
|
78 |
+
2
|
79 |
+
],
|
80 |
+
"torch_dtype": "float32",
|
81 |
+
"transformers_version": "4.48.3"
|
82 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28572be94709af442271b5f0d19c97aee240a2248de66b0dfc9ab9cf48dc588d
|
3 |
+
size 14886832
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ce5201d078a5a702929dd2ea6f94377a7e264afd1dd047f27e5ff178bc5dc25
|
3 |
+
size 5432
|