--- base_model: - huihui-ai/Llama-3.1-Tulu-3-70B-abliterated - migtissera/Tess-3-Llama-3.1-70B - Nexesenex/Llama_3.x_70b_L3.3_Dolphin_128K_v1.02 - huihui-ai/Tess-R1-Limerick-Llama-3.1-70B-abliterated - mlabonne/Hermes-3-Llama-3.1-70B-lorablated - nbeerbower/Llama-3.1-Nemotron-lorablated-70B library_name: transformers tags: - mergekit - merge --- # about Original name : Llama_3.x_70b_Dolnemhertulimtess_v1.0 Also known as : Llama_3.x_70b_Dolmen_v1.0 (1.1 will come soon) This model is essentially a Llama 3.1 smart brick based on by a 3.0->3.3 "port", to be used in second level merges. I might abandon the 3 stages "smart merges" (like Smarteaz) because they are dilluting too much the source models used with the merge-stock technique once I add more models on the top of them. Even if the benches and PPL are good, and the prose as well, it ends up being too dilluted furthermore into the level 4/5 merges I'm doing afterwards. So, this time, for the base, I used a Llama 3.0 Dolphin 2.9.1/Llama 3.3 instruct abliterated merge, in order to get both the capabilities of each model, and notably Dolphin, not ported on Llama 70b 3.1 or 3.3 by CognitiveComputations. Then, I added the best 'instructions oriented' finetunes I know, simple as that. The model is highly uncensored, quite intelligent, and can be used as a standalone. --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Nexesenex/Llama_3.x_70b_L3.3_Dolphin_128K_v1.02](https://huggingface.co/Nexesenex/Llama_3.x_70b_L3.3_Dolphin_128K_v1.02) as a base. ### Models Merged The following models were included in the merge: * [huihui-ai/Llama-3.1-Tulu-3-70B-abliterated](https://huggingface.co/huihui-ai/Llama-3.1-Tulu-3-70B-abliterated) * [migtissera/Tess-3-Llama-3.1-70B](https://huggingface.co/migtissera/Tess-3-Llama-3.1-70B) * [huihui-ai/Tess-R1-Limerick-Llama-3.1-70B-abliterated](https://huggingface.co/huihui-ai/Tess-R1-Limerick-Llama-3.1-70B-abliterated) * [mlabonne/Hermes-3-Llama-3.1-70B-lorablated](https://huggingface.co/mlabonne/Hermes-3-Llama-3.1-70B-lorablated) * [nbeerbower/Llama-3.1-Nemotron-lorablated-70B](https://huggingface.co/nbeerbower/Llama-3.1-Nemotron-lorablated-70B) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: model_stock models: - model: Nexesenex/Llama_3.x_70b_L3.3_Dolphin_128K_v1.02 parameters: weight: 1.0 - model: nbeerbower/Llama-3.1-Nemotron-lorablated-70B parameters: weight: 1.0 - model: mlabonne/Hermes-3-Llama-3.1-70B-lorablated parameters: weight: 1.0 - model: huihui-ai/Llama-3.1-Tulu-3-70B-abliterated parameters: weight: 1.0 - model: huihui-ai/Tess-R1-Limerick-Llama-3.1-70B-abliterated parameters: weight: 1.0 - model: migtissera/Tess-3-Llama-3.1-70B parameters: weight: 1.0 base_model: Nexesenex/Llama_3.x_70b_L3.3_Dolphin_128K_v1.02 dtype: bfloat16 out_dtype: bfloat16 parameters: int8_mask: true normalize: true rescale: false filter_wise: false smooth: false allow_negative_weights: false chat_template: auto tokenizer: source: union ```