|
|
|
|
|
import neat
|
|
import numpy as np
|
|
import os
|
|
import logging
|
|
import pickle
|
|
import random
|
|
import math
|
|
import datetime
|
|
import itertools
|
|
|
|
|
|
log_filename = f"quanta_log_v4_corr_{datetime.datetime.now():%Y%m%d_%H%M%S}.log"
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
|
|
handlers=[
|
|
logging.FileHandler(log_filename),
|
|
logging.StreamHandler()
|
|
]
|
|
)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
logger.info("="*70)
|
|
logger.info("Quanta Simülatörü Başlatılıyor (Sürüm 4 - Korelasyonlu Çıktılar)")
|
|
logger.info("="*70)
|
|
|
|
|
|
NUM_TEST_VALUES_PER_AXIS = 3
|
|
NUM_TRIALS_PER_PAIR = 30
|
|
|
|
MAX_GENERATIONS = 250
|
|
FITNESS_THRESHOLD = 0.97
|
|
|
|
num_test_points = NUM_TEST_VALUES_PER_AXIS ** 2
|
|
total_trials_per_genome = num_test_points * NUM_TRIALS_PER_PAIR
|
|
|
|
|
|
W_PA0 = 1.0
|
|
W_PB0 = 1.0
|
|
W_CORR = 1.5
|
|
TOTAL_WEIGHT = W_PA0 + W_PB0 + W_CORR
|
|
|
|
logger.info(f"Eksen Başına Test Değeri: {NUM_TEST_VALUES_PER_AXIS} ({num_test_points} test noktası)")
|
|
logger.info(f"Girdi Çifti Başına Deneme: {NUM_TRIALS_PER_PAIR} (Toplam {total_trials_per_genome} deneme/genom)")
|
|
logger.info(f"Maksimum Nesil: {MAX_GENERATIONS}")
|
|
logger.info(f"Fitness Eşiği: {FITNESS_THRESHOLD}")
|
|
logger.info(f"Fitness Hata Ağırlıkları: P(A=0)={W_PA0:.1f}, P(B=0)={W_PB0:.1f}, Corr={W_CORR:.1f}")
|
|
|
|
|
|
def target_PA0(x1, x2):
|
|
return 0.2 + 0.6 * x1
|
|
|
|
def target_PB0(x1, x2):
|
|
return 0.7 - 0.5 * x2
|
|
|
|
def target_Corr(x1, x2):
|
|
|
|
return -0.8 * x1 * x2
|
|
|
|
logger.info(f"Hedef P(A=0|x1,x2) = 0.2 + 0.6*x1")
|
|
logger.info(f"Hedef P(B=0|x1,x2) = 0.7 - 0.5*x2")
|
|
logger.info(f"Hedef Corr(A,B|x1,x2) = -0.8 * x1 * x2")
|
|
|
|
|
|
def calculate_correlation(pA0, pB0, pA0B0, epsilon=1e-9):
|
|
""" Verilen olasılıklardan korelasyonu hesaplar. """
|
|
pA1 = 1.0 - pA0
|
|
pB1 = 1.0 - pB0
|
|
|
|
|
|
covariance = pA0B0 - pA0 * pB0
|
|
|
|
|
|
varA = pA0 * pA1
|
|
varB = pB0 * pB1
|
|
|
|
|
|
denominator = math.sqrt((varA + epsilon) * (varB + epsilon))
|
|
|
|
if denominator < epsilon:
|
|
return 0.0
|
|
|
|
correlation = covariance / denominator
|
|
|
|
return max(-1.0, min(1.0, correlation))
|
|
|
|
|
|
|
|
def eval_genomes(genomes, config):
|
|
"""
|
|
Popülasyondaki genomların fitness'ını hesaplar. Fitness, ağın
|
|
P(A=0), P(B=0) ve Corr(A,B) hedeflerini farklı girdilerde
|
|
ne kadar iyi yakaladığına göre belirlenir.
|
|
"""
|
|
axis_values = np.linspace(0.0, 1.0, NUM_TEST_VALUES_PER_AXIS)
|
|
test_input_pairs = list(itertools.product(axis_values, repeat=2))
|
|
|
|
for genome_id, genome in genomes:
|
|
genome.fitness = 0.0
|
|
try:
|
|
net = neat.nn.FeedForwardNetwork.create(genome, config)
|
|
except Exception as e:
|
|
logger.error(f"Genome {genome_id} için ağ oluşturulamadı: {e}")
|
|
genome.fitness = -20.0
|
|
continue
|
|
|
|
total_weighted_error_sum = 0.0
|
|
|
|
for input_pair in test_input_pairs:
|
|
x1, x2 = input_pair
|
|
targ_pA0 = target_PA0(x1, x2)
|
|
targ_pB0 = target_PB0(x1, x2)
|
|
targ_corr = target_Corr(x1, x2)
|
|
|
|
count_A0 = 0
|
|
count_B0 = 0
|
|
count_A0B0 = 0
|
|
|
|
|
|
for _ in range(NUM_TRIALS_PER_PAIR):
|
|
try:
|
|
output1, output2 = net.activate(input_pair)
|
|
|
|
res_A = 1 if output1 >= 0.5 else 0
|
|
res_B = 1 if output2 >= 0.5 else 0
|
|
|
|
if res_A == 0: count_A0 += 1
|
|
if res_B == 0: count_B0 += 1
|
|
if res_A == 0 and res_B == 0: count_A0B0 += 1
|
|
|
|
except Exception as e:
|
|
logger.warning(f"Genome {genome_id}, Input {input_pair} aktivasyon hatası: {e}")
|
|
|
|
pass
|
|
|
|
|
|
if NUM_TRIALS_PER_PAIR > 0:
|
|
obs_pA0 = count_A0 / NUM_TRIALS_PER_PAIR
|
|
obs_pB0 = count_B0 / NUM_TRIALS_PER_PAIR
|
|
obs_pA0B0 = count_A0B0 / NUM_TRIALS_PER_PAIR
|
|
else:
|
|
obs_pA0, obs_pB0, obs_pA0B0 = 0.5, 0.5, 0.25
|
|
|
|
|
|
obs_corr = calculate_correlation(obs_pA0, obs_pB0, obs_pA0B0)
|
|
|
|
|
|
error_pA0 = (obs_pA0 - targ_pA0) ** 2
|
|
error_pB0 = (obs_pB0 - targ_pB0) ** 2
|
|
error_corr = (obs_corr - targ_corr) ** 2
|
|
|
|
|
|
weighted_error = (W_PA0 * error_pA0 + W_PB0 * error_pB0 + W_CORR * error_corr) / TOTAL_WEIGHT
|
|
total_weighted_error_sum += weighted_error
|
|
|
|
|
|
|
|
|
|
average_weighted_error = total_weighted_error_sum / len(test_input_pairs)
|
|
|
|
|
|
fitness = max(0.0, 1.0 - math.sqrt(average_weighted_error))
|
|
genome.fitness = fitness
|
|
|
|
|
|
|
|
|
|
def run_neat(config_file):
|
|
logger.info(f"NEAT yapılandırması yükleniyor: {config_file}")
|
|
try:
|
|
config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction,
|
|
neat.DefaultSpeciesSet, neat.DefaultStagnation,
|
|
config_file)
|
|
config.fitness_threshold = FITNESS_THRESHOLD
|
|
logger.info(f"Yapılandırma: Giriş={config.genome_config.num_inputs}, Çıkış={config.genome_config.num_outputs}, Pop={config.pop_size}, Eşik={config.fitness_threshold}")
|
|
except Exception as e:
|
|
logger.critical(f"Yapılandırma dosyası yüklenemedi: {config_file} - Hata: {e}")
|
|
return None
|
|
|
|
logger.info("Yeni popülasyon oluşturuluyor...")
|
|
p = neat.Population(config)
|
|
|
|
|
|
p.add_reporter(neat.StdOutReporter(True))
|
|
checkpoint_prefix = 'neat-checkpoint-v4-'
|
|
p.add_reporter(neat.Checkpointer(20, filename_prefix=checkpoint_prefix))
|
|
logger.info(f"Checkpoint dosyaları '{checkpoint_prefix}*' olarak kaydedilecek.")
|
|
|
|
logger.info(f"Evrim başlıyor (Maksimum {MAX_GENERATIONS} nesil)...")
|
|
try:
|
|
winner = p.run(eval_genomes, MAX_GENERATIONS)
|
|
logger.info(' ' + "="*30 + " Evrim Tamamlandı " + "="*30)
|
|
except Exception as e:
|
|
logger.critical(f"Evrim sırasında kritik bir hata oluştu: {e}")
|
|
|
|
return None
|
|
|
|
|
|
if winner:
|
|
logger.info(f'En iyi genom bulundu (Fitness: {winner.fitness:.6f}):')
|
|
|
|
|
|
|
|
winner_filename = "winner_genome_v4.pkl"
|
|
try:
|
|
with open(winner_filename, 'wb') as f:
|
|
pickle.dump(winner, f)
|
|
logger.info(f"En iyi genom '{winner_filename}' dosyasına başarıyla kaydedildi.")
|
|
except Exception as e:
|
|
logger.error(f"En iyi genom kaydedilemedi: {e}")
|
|
|
|
|
|
logger.info(" " + "="*25 + " En İyi Genom Detaylı Testi (Korelasyon) " + "="*25)
|
|
try:
|
|
winner_net = neat.nn.FeedForwardNetwork.create(winner, config)
|
|
test_trials_final = 1000
|
|
logger.info(f"En iyi ağ, farklı girdi çiftleriyle {test_trials_final} kez test ediliyor...")
|
|
|
|
final_axis_values = np.linspace(0.0, 1.0, 5)
|
|
final_test_pairs = list(itertools.product(final_axis_values, repeat=2))
|
|
final_total_weighted_error_sq_sum = 0.0
|
|
|
|
hdr = f"{'Input (x1,x2)': <14} {'Tgt(PA0,PB0,Corr)': <22} {'Obs(PA0,PB0,Corr)': <22} {'Err^2(Comb)': <10}"
|
|
logger.info(hdr)
|
|
logger.info("-" * len(hdr))
|
|
|
|
for input_pair in final_test_pairs:
|
|
x1, x2 = input_pair
|
|
targ_pA0 = target_PA0(x1, x2)
|
|
targ_pB0 = target_PB0(x1, x2)
|
|
targ_corr = target_Corr(x1, x2)
|
|
|
|
count_A0, count_B0, count_A0B0 = 0, 0, 0
|
|
for _ in range(test_trials_final):
|
|
output1, output2 = winner_net.activate(input_pair)
|
|
res_A = 0 if output1 < 0.5 else 1
|
|
res_B = 0 if output2 < 0.5 else 1
|
|
if res_A == 0: count_A0 += 1
|
|
if res_B == 0: count_B0 += 1
|
|
if res_A == 0 and res_B == 0: count_A0B0 += 1
|
|
|
|
obs_pA0 = count_A0 / test_trials_final
|
|
obs_pB0 = count_B0 / test_trials_final
|
|
obs_pA0B0 = count_A0B0 / test_trials_final
|
|
obs_corr = calculate_correlation(obs_pA0, obs_pB0, obs_pA0B0)
|
|
|
|
error_pA0 = (obs_pA0 - targ_pA0) ** 2
|
|
error_pB0 = (obs_pB0 - targ_pB0) ** 2
|
|
error_corr = (obs_corr - targ_corr) ** 2
|
|
weighted_error_sq = (W_PA0 * error_pA0 + W_PB0 * error_pB0 + W_CORR * error_corr) / TOTAL_WEIGHT
|
|
final_total_weighted_error_sq_sum += weighted_error_sq
|
|
|
|
tgt_str = f"({targ_pA0:.2f},{targ_pB0:.2f},{targ_corr:.2f})"
|
|
obs_str = f"({obs_pA0:.2f},{obs_pB0:.2f},{obs_corr:.2f})"
|
|
logger.info(f"({x1:.2f}, {x2:.2f}) {tgt_str: <22} {obs_str: <22} {weighted_error_sq:<10.5f}")
|
|
|
|
final_avg_weighted_error_sq = final_total_weighted_error_sq_sum / len(final_test_pairs)
|
|
final_rmse_equivalent = math.sqrt(final_avg_weighted_error_sq)
|
|
logger.info("-" * len(hdr))
|
|
logger.info(f"Final Ortalama Ağırlıklı Karesel Hata (MSE ~): {final_avg_weighted_error_sq:.6f}")
|
|
logger.info(f"Final Kök Ort. Karesel Hata (~RMSE): {final_rmse_equivalent:.6f}")
|
|
logger.info(f"Final Fitness Yaklaşımı (1 - ~RMSE): {1.0 - final_rmse_equivalent:.6f}")
|
|
logger.info("-" * len(hdr))
|
|
|
|
except Exception as e:
|
|
logger.error(f"En iyi genom test edilirken hata oluştu: {e}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
else:
|
|
logger.warning("Test edilecek bir kazanan genom bulunamadı.")
|
|
|
|
logger.info("="*70)
|
|
logger.info("Quanta Simülatörü Adım 4 (Korelasyonlu Çıktılar) tamamlandı.")
|
|
logger.info("="*70)
|
|
return winner
|
|
|
|
|
|
if __name__ == '__main__':
|
|
local_dir = os.path.dirname(os.path.abspath(__file__))
|
|
config_path = os.path.join(local_dir, 'config-feedforward-v4.txt')
|
|
|
|
if not os.path.exists(config_path):
|
|
logger.critical(f"Yapılandırma dosyası bulunamadı: {config_path}")
|
|
else:
|
|
run_neat(config_path) |