File size: 4,344 Bytes
c1e4a1b
954388d
 
 
c1e4a1b
 
 
 
 
 
8da7308
c1e4a1b
 
 
 
954388d
c1e4a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
954388d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1e4a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: other
license_name: llama3
license_link: LICENSE
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
base_model: []
---

# llama-3-sqrt-crocodile-v0.0A

## 🧩 Configuration-moe

```yaml
base_model: llama-3-sqrt-crocodile-v0.0A/Uninstruct-Uncensored
gate_mode: hidden
dtype: bfloat16
experts:
  - source_model: llama-3-sqrt-crocodile-v0.0A/sqrt-talker
    positive_prompts:
      - "Uncensored, creative, configurable, adapative"
  - source_model: llama-3-sqrt-crocodile-v0.0A/the-operator 
    positive_prompts:
      - "Function calling"
      - "Good at structured tasks"
      - "Programmatic instruction following"
```
## 🧩 Configuration-mega 
```yaml
models:
  - model: Orenguteng/Lexi-Llama-3-8B-Uncensored
    parameters:
      weight: [0.2, 0.3, 0.4, 0.6]
    layer_range: [0, 32]
  - model: NousResearch/Meta-Llama-3-8B
    parameters:
      weight: [0.6, 0.2, 0.2, 0.1]
    layer_range: [0, 32]
  - model: NousResearch/Meta-Llama-3-8B-Instruct
    parameters:
      weight: [0.2, 0.3, 0.85, 0.3]
    layer_range: [0, 32]
merge_method: dare_linear
base_model: NousResearch/Meta-Llama-3-8B-Instruct
dtype: bfloat16
name: Uninstruct-Uncensored
---
models:
  - model: cognitivecomputations/dolphin-2.9-llama3-8b
    parameters:
      weight: [0.25, 0.4, 0.35, 0.35]
      density: [0.3, 0.45, 0.2, 0.6]
    layer_range: [0, 32]
  - model: NousResearch/Meta-Llama-3-8B
    parameters: 
      weight: [0.15, 0.25, 0.05, 0]
      density: [0.2, 0.3, 0.4, 0.1]
  - model: Undi95/Llama-3-Unholy-8B
    parameters:
      weight: [0.4, 0.25, 0.45, 0.35]
      density: [0.2, 0.15, 1.5, 0.1]
    layer_range: [0, 32]
  - model: Uninstruct-Uncensored
    parameters:
      weight: [0.3, 0.1, 0.25, 0.3]
      density: [0.3, 0.15, 2.5, 0.2]
    layer_range: [0, 32]
merge_method: dare_ties
base_model: Uninstruct-Uncensored
dtype: bfloat16
name: augmented-dolphin-hap
---
models:
  - model: vicgalle/Configurable-Llama-3-8B-v0.3
    parameters:
      weight: [0.5, 0.3, 0.1]
  - model: hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode
    parameters:
      weight: 0.5
  - model: Trelis/Meta-Llama-3-8B-Instruct-function-calling
    parameters:
      weight: 0.3
    layer_range: [0, 32]
  - model: Rookie/Llama-3-8B-Instruct-Chinese 
    parameters:
      weight: 0.2
    layer_range: [0, 32]
  - model: Uninstruct-Uncensored
    parameters:
      weight: [0.7, 0.4, 0.25, 0.1]
    layer_range: [0, 32]
merge_method: model_stock
base_model: Uninstruct-Uncensored
dtype: bfloat16
name: the-operator
---
models:
  - model: vicgalle/Configurable-Llama-3-8B-v0.3
    parameters:
      weight: 0.7
  - model: hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode
    parameters:
      weight: 0.1
  - model: Trelis/Meta-Llama-3-8B-Instruct-function-calling
    parameters:
      weight: 0.03
    layer_range: [0, 32]
  - model: Rookie/Llama-3-8B-Instruct-Chinese
    parameters:
      weight: 0.07
    layer_range: [0, 32]
  - model: Uninstruct-Uncensored
    parameters:
      weight: 0.1
    layer_range: [0, 32]
merge_method: model_stock
base_model: Uninstruct-Uncensored
dtype: bfloat16
name: her-calculator
---
models:
  - model: her-calculator
    parameters:
      density: 0.7 # density gradient
      weight: [0.7, 0.5, 0.1, 0.8]
  - model: augmented-dolphin-hap
    parameters:
      weight: 0.7
merge_method: slerp
base_model: her-calculator
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5 # fallback for rest of tensors
dtype: float16
name: sqrt-talker
``` 
## 💻 Usage

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Nhoodie/llama-3-sqrt-crocodile-v0.0A"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```