|
--- |
|
license: other |
|
license_name: llama3 |
|
license_link: LICENSE |
|
tags: |
|
- moe |
|
- frankenmoe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
base_model: [] |
|
--- |
|
|
|
# llama-3-sqrt-crocodile-v0.0A |
|
|
|
## 🧩 Configuration-moe |
|
|
|
```yaml |
|
base_model: llama-3-sqrt-crocodile-v0.0A/Uninstruct-Uncensored |
|
gate_mode: hidden |
|
dtype: bfloat16 |
|
experts: |
|
- source_model: llama-3-sqrt-crocodile-v0.0A/sqrt-talker |
|
positive_prompts: |
|
- "Uncensored, creative, configurable, adapative" |
|
- source_model: llama-3-sqrt-crocodile-v0.0A/the-operator |
|
positive_prompts: |
|
- "Function calling" |
|
- "Good at structured tasks" |
|
- "Programmatic instruction following" |
|
``` |
|
## 🧩 Configuration-mega |
|
```yaml |
|
models: |
|
- model: Orenguteng/Lexi-Llama-3-8B-Uncensored |
|
parameters: |
|
weight: [0.2, 0.3, 0.4, 0.6] |
|
layer_range: [0, 32] |
|
- model: NousResearch/Meta-Llama-3-8B |
|
parameters: |
|
weight: [0.6, 0.2, 0.2, 0.1] |
|
layer_range: [0, 32] |
|
- model: NousResearch/Meta-Llama-3-8B-Instruct |
|
parameters: |
|
weight: [0.2, 0.3, 0.85, 0.3] |
|
layer_range: [0, 32] |
|
merge_method: dare_linear |
|
base_model: NousResearch/Meta-Llama-3-8B-Instruct |
|
dtype: bfloat16 |
|
name: Uninstruct-Uncensored |
|
--- |
|
models: |
|
- model: cognitivecomputations/dolphin-2.9-llama3-8b |
|
parameters: |
|
weight: [0.25, 0.4, 0.35, 0.35] |
|
density: [0.3, 0.45, 0.2, 0.6] |
|
layer_range: [0, 32] |
|
- model: NousResearch/Meta-Llama-3-8B |
|
parameters: |
|
weight: [0.15, 0.25, 0.05, 0] |
|
density: [0.2, 0.3, 0.4, 0.1] |
|
- model: Undi95/Llama-3-Unholy-8B |
|
parameters: |
|
weight: [0.4, 0.25, 0.45, 0.35] |
|
density: [0.2, 0.15, 1.5, 0.1] |
|
layer_range: [0, 32] |
|
- model: Uninstruct-Uncensored |
|
parameters: |
|
weight: [0.3, 0.1, 0.25, 0.3] |
|
density: [0.3, 0.15, 2.5, 0.2] |
|
layer_range: [0, 32] |
|
merge_method: dare_ties |
|
base_model: Uninstruct-Uncensored |
|
dtype: bfloat16 |
|
name: augmented-dolphin-hap |
|
--- |
|
models: |
|
- model: vicgalle/Configurable-Llama-3-8B-v0.3 |
|
parameters: |
|
weight: [0.5, 0.3, 0.1] |
|
- model: hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode |
|
parameters: |
|
weight: 0.5 |
|
- model: Trelis/Meta-Llama-3-8B-Instruct-function-calling |
|
parameters: |
|
weight: 0.3 |
|
layer_range: [0, 32] |
|
- model: Rookie/Llama-3-8B-Instruct-Chinese |
|
parameters: |
|
weight: 0.2 |
|
layer_range: [0, 32] |
|
- model: Uninstruct-Uncensored |
|
parameters: |
|
weight: [0.7, 0.4, 0.25, 0.1] |
|
layer_range: [0, 32] |
|
merge_method: model_stock |
|
base_model: Uninstruct-Uncensored |
|
dtype: bfloat16 |
|
name: the-operator |
|
--- |
|
models: |
|
- model: vicgalle/Configurable-Llama-3-8B-v0.3 |
|
parameters: |
|
weight: 0.7 |
|
- model: hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode |
|
parameters: |
|
weight: 0.1 |
|
- model: Trelis/Meta-Llama-3-8B-Instruct-function-calling |
|
parameters: |
|
weight: 0.03 |
|
layer_range: [0, 32] |
|
- model: Rookie/Llama-3-8B-Instruct-Chinese |
|
parameters: |
|
weight: 0.07 |
|
layer_range: [0, 32] |
|
- model: Uninstruct-Uncensored |
|
parameters: |
|
weight: 0.1 |
|
layer_range: [0, 32] |
|
merge_method: model_stock |
|
base_model: Uninstruct-Uncensored |
|
dtype: bfloat16 |
|
name: her-calculator |
|
--- |
|
models: |
|
- model: her-calculator |
|
parameters: |
|
density: 0.7 # density gradient |
|
weight: [0.7, 0.5, 0.1, 0.8] |
|
- model: augmented-dolphin-hap |
|
parameters: |
|
weight: 0.7 |
|
merge_method: slerp |
|
base_model: her-calculator |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 # fallback for rest of tensors |
|
dtype: float16 |
|
name: sqrt-talker |
|
``` |
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Nhoodie/llama-3-sqrt-crocodile-v0.0A" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |