--- license: other license_name: llama3 license_link: LICENSE tags: - moe - frankenmoe - merge - mergekit - lazymergekit base_model: [] --- # llama-3-sqrt-crocodile-v0.0A ## 🧩 Configuration-moe ```yaml base_model: llama-3-sqrt-crocodile-v0.0A/Uninstruct-Uncensored gate_mode: hidden dtype: bfloat16 experts: - source_model: llama-3-sqrt-crocodile-v0.0A/sqrt-talker positive_prompts: - "Uncensored, creative, configurable, adapative" - source_model: llama-3-sqrt-crocodile-v0.0A/the-operator positive_prompts: - "Function calling" - "Good at structured tasks" - "Programmatic instruction following" ``` ## 🧩 Configuration-mega ```yaml models: - model: Orenguteng/Lexi-Llama-3-8B-Uncensored parameters: weight: [0.2, 0.3, 0.4, 0.6] layer_range: [0, 32] - model: NousResearch/Meta-Llama-3-8B parameters: weight: [0.6, 0.2, 0.2, 0.1] layer_range: [0, 32] - model: NousResearch/Meta-Llama-3-8B-Instruct parameters: weight: [0.2, 0.3, 0.85, 0.3] layer_range: [0, 32] merge_method: dare_linear base_model: NousResearch/Meta-Llama-3-8B-Instruct dtype: bfloat16 name: Uninstruct-Uncensored --- models: - model: cognitivecomputations/dolphin-2.9-llama3-8b parameters: weight: [0.25, 0.4, 0.35, 0.35] density: [0.3, 0.45, 0.2, 0.6] layer_range: [0, 32] - model: NousResearch/Meta-Llama-3-8B parameters: weight: [0.15, 0.25, 0.05, 0] density: [0.2, 0.3, 0.4, 0.1] - model: Undi95/Llama-3-Unholy-8B parameters: weight: [0.4, 0.25, 0.45, 0.35] density: [0.2, 0.15, 1.5, 0.1] layer_range: [0, 32] - model: Uninstruct-Uncensored parameters: weight: [0.3, 0.1, 0.25, 0.3] density: [0.3, 0.15, 2.5, 0.2] layer_range: [0, 32] merge_method: dare_ties base_model: Uninstruct-Uncensored dtype: bfloat16 name: augmented-dolphin-hap --- models: - model: vicgalle/Configurable-Llama-3-8B-v0.3 parameters: weight: [0.5, 0.3, 0.1] - model: hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode parameters: weight: 0.5 - model: Trelis/Meta-Llama-3-8B-Instruct-function-calling parameters: weight: 0.3 layer_range: [0, 32] - model: Rookie/Llama-3-8B-Instruct-Chinese parameters: weight: 0.2 layer_range: [0, 32] - model: Uninstruct-Uncensored parameters: weight: [0.7, 0.4, 0.25, 0.1] layer_range: [0, 32] merge_method: model_stock base_model: Uninstruct-Uncensored dtype: bfloat16 name: the-operator --- models: - model: vicgalle/Configurable-Llama-3-8B-v0.3 parameters: weight: 0.7 - model: hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode parameters: weight: 0.1 - model: Trelis/Meta-Llama-3-8B-Instruct-function-calling parameters: weight: 0.03 layer_range: [0, 32] - model: Rookie/Llama-3-8B-Instruct-Chinese parameters: weight: 0.07 layer_range: [0, 32] - model: Uninstruct-Uncensored parameters: weight: 0.1 layer_range: [0, 32] merge_method: model_stock base_model: Uninstruct-Uncensored dtype: bfloat16 name: her-calculator --- models: - model: her-calculator parameters: density: 0.7 # density gradient weight: [0.7, 0.5, 0.1, 0.8] - model: augmented-dolphin-hap parameters: weight: 0.7 merge_method: slerp base_model: her-calculator parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: float16 name: sqrt-talker ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Nhoodie/llama-3-sqrt-crocodile-v0.0A" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```