NiharMandahas commited on
Commit
6fa1fcb
·
verified ·
1 Parent(s): ae8844b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - fraud-detection
4
+ - random-forest
5
+ - sklearn
6
+ library_name: sklearn
7
+ pipeline_tag: tabular-classification
8
+ ---
9
+
10
+ # Random Forest Fraud Detection Model
11
+
12
+ This model uses Random Forest classification to detect potential fraud based on various account and transaction features.
13
+
14
+ ## Model Description
15
+
16
+ - **Input Features:**
17
+ - Account Age (months)
18
+ - Frequency of credential changes (per year)
19
+ - Return to Order ratio
20
+ - VPN/Temp Mail usage (binary)
21
+ - Credit Score
22
+
23
+ - **Output:** Binary classification (Fraud/Not Fraud)
24
+ - **Type:** Random Forest Classifier
25
+
26
+ ## Usage
27
+
28
+ ```python
29
+ import joblib
30
+ import numpy as np
31
+
32
+ # Load model and scaler
33
+ model = joblib.load('random_forest_model.joblib')
34
+ scaler = joblib.load('rf_scaler.joblib')
35
+
36
+ # Prepare input (example)
37
+ input_data = np.array([[25, 0.5, 0.4, 0, 800]])
38
+
39
+ # Scale input
40
+ scaled_input = scaler.transform(input_data)
41
+
42
+ # Get prediction
43
+ prediction = model.predict(scaled_input)
44
+ probability = model.predict_proba(scaled_input)
45
+ ```
46
+
47
+ ## Limitations and Bias
48
+
49
+ This model should be used as part of a larger fraud detection system and not in isolation.