--- library_name: transformers license: mit base_model: neuralmind/bert-large-portuguese-cased tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: ner-bert-lenerbr-large-v1 results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br config: lener_br split: validation args: lener_br metrics: - name: Precision type: precision value: 0.865924092409241 - name: Recall type: recall value: 0.9027956989247312 - name: F1 type: f1 value: 0.8839755738050117 - name: Accuracy type: accuracy value: 0.9754064638030079 --- # ner-bert-lenerbr-large-v1 This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: 0.1337 - Precision: 0.8659 - Recall: 0.9028 - F1: 0.8840 - Accuracy: 0.9754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0521 | 1.0 | 979 | 0.1236 | 0.8260 | 0.8626 | 0.8439 | 0.9676 | | 0.0338 | 2.0 | 1958 | 0.2221 | 0.6535 | 0.9185 | 0.7636 | 0.9536 | | 0.0201 | 3.0 | 2937 | 0.1381 | 0.7573 | 0.9084 | 0.8260 | 0.9679 | | 0.0163 | 4.0 | 3916 | 0.1337 | 0.8659 | 0.9028 | 0.8840 | 0.9754 | | 0.0132 | 5.0 | 4895 | 0.1462 | 0.8392 | 0.9037 | 0.8702 | 0.9717 | | 0.0105 | 6.0 | 5874 | 0.1423 | 0.8443 | 0.9211 | 0.8810 | 0.9738 | | 0.0036 | 7.0 | 6853 | 0.1671 | 0.7994 | 0.9168 | 0.8541 | 0.9696 | | 0.0055 | 8.0 | 7832 | 0.1884 | 0.7808 | 0.9161 | 0.8431 | 0.9672 | | 0.0023 | 9.0 | 8811 | 0.1772 | 0.8182 | 0.9148 | 0.8638 | 0.9718 | | 0.0019 | 10.0 | 9790 | 0.1788 | 0.8180 | 0.9181 | 0.8651 | 0.9718 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1