Upload 44 files
Browse files- .gitattributes +3 -0
- BIAS.md +6 -0
- EXPLAINABILITY.md +14 -0
- PRIVACY.md +11 -0
- README.md +355 -5
- SAFETY_and_SECURITY.md +8 -0
- __init__.py +0 -0
- accuracy_plot.png +3 -0
- block_config.py +118 -0
- config.json +2972 -0
- configuration_decilm.py +65 -0
- model-00001-of-00015.safetensors +3 -0
- model-00002-of-00015.safetensors +3 -0
- model-00003-of-00015.safetensors +3 -0
- model-00004-of-00015.safetensors +3 -0
- model-00005-of-00015.safetensors +3 -0
- model-00006-of-00015.safetensors +3 -0
- model-00007-of-00015.safetensors +3 -0
- model-00008-of-00015.safetensors +3 -0
- model-00009-of-00015.safetensors +3 -0
- model-00010-of-00015.safetensors +3 -0
- model-00011-of-00015.safetensors +3 -0
- model-00012-of-00015.safetensors +3 -0
- model-00013-of-00015.safetensors +3 -0
- model-00014-of-00015.safetensors +3 -0
- model-00015-of-00015.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_decilm.py +1681 -0
- nemo_common.json +1 -0
- nemo_model_config.yaml +211 -0
- quantization_config.json +0 -0
- special_tokens_map.json +16 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2063 -0
- tokenizer_name.txt +1 -0
- training_flowchart.png +3 -0
- transformers_4_44_2__activations.py +239 -0
- transformers_4_44_2__cache_utils.py +1347 -0
- transformers_4_44_2__configuration_llama.py +203 -0
- transformers_4_44_2__modeling_attn_mask_utils.py +482 -0
- transformers_4_44_2__modeling_flash_attention_utils_backward_compat.py +348 -0
- transformers_4_44_2__modeling_outputs.py +0 -0
- transformers_4_44_2__modeling_rope_utils.py +559 -0
- transformers_4_44_2__pytorch_utils.py +17 -0
- variable_cache.py +139 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
accuracy_plot.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
training_flowchart.png filter=lfs diff=lfs merge=lfs -text
|
BIAS.md
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# **Bias**
|
2 |
+
|
3 |
+
|Field:|Response:|
|
4 |
+
|:---:|:---:|
|
5 |
+
|Participation considerations from adversely impacted groups (protected classes) in model design and testing:|None|
|
6 |
+
|Measures taken to mitigate against unwanted bias:|None|
|
EXPLAINABILITY.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# **Explainability**
|
2 |
+
|
3 |
+
|Field:|Response:|
|
4 |
+
|:---:|:---:|
|
5 |
+
|Intended Application(s) & Domain(s):| Text generation, reasoning, summarization, and question answering. |
|
6 |
+
|Model Type: |Text-to-text transformer |
|
7 |
+
|Intended Users:|This model is intended for developers, researchers, and customers building/utilizing LLMs, while balancing accuracy and efficiency.|
|
8 |
+
|Output:|Text String(s)|
|
9 |
+
|Describe how the model works:|Generates text by predicting the next word or token based on the context provided in the input sequence using multiple self-attention layers|
|
10 |
+
|Technical Limitations:| The model was trained on data that contains toxic language, unsafe content, and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.\<br/\>The model demonstrates weakness to alignment-breaking attacks. Users are advised to deploy language model guardrails alongside this model to prevent potentially harmful outputs.\<br/\>The Model may generate answers that are inaccurate, omit key information, or include irrelevant or redundant text.|
|
11 |
+
|Verified to have met prescribed quality standards?|Yes|
|
12 |
+
|Performance Metrics:|Accuracy, Throughput, and user-side throughput|
|
13 |
+
|Potential Known Risks:|The model was optimized explicitly for instruction following and as such is more susceptible to prompt injection and jailbreaking in various forms as a result of its instruction tuning. This means that the model should be paired with additional rails or system filtering to limit exposure to instructions from malicious sources -- either directly or indirectly by retrieval (e.g. via visiting a website) -- as they may yield outputs that can lead to harmful, system-level outcomes up to and including remote code execution in agentic systems when effective security controls including guardrails are not in place.\<br/\>The model was trained on data that contains toxic language and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.|
|
14 |
+
|End User License Agreement:| Your use of this model is governed by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/). Additional Information: [Llama 3.1 Community License Agreement](https://www.llama.com/llama3\_1/license/). Built with Llama. |
|
PRIVACY.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# **Privacy**
|
2 |
+
|
3 |
+
|Field:|Response:|
|
4 |
+
|:---:|:---:|
|
5 |
+
|Generatable or Reverse engineerable personally-identifiable information?|None|
|
6 |
+
|Was consent obtained for any personal data used?|None Known|
|
7 |
+
|Personal data used to create this model?|None Known|
|
8 |
+
|How often is dataset reviewed?|Before Release|
|
9 |
+
|Is there provenance for all datasets used in training?|Yes|
|
10 |
+
|Does data labeling (annotation, metadata) comply with privacy laws?|Yes|
|
11 |
+
|Applicable NVIDIA Privacy Policy|https://www.nvidia.com/en-us/about-nvidia/privacy-policy/|
|
README.md
CHANGED
@@ -1,5 +1,355 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
license_name: nvidia-open-model-license
|
5 |
+
license_link: >-
|
6 |
+
https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
|
7 |
+
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
tags:
|
12 |
+
- nvidia
|
13 |
+
- llama-3
|
14 |
+
- pytorch
|
15 |
+
---
|
16 |
+
|
17 |
+
# Llama-3.1-Nemotron-Ultra-253B-v1
|
18 |
+
|
19 |
+
## Model Overview
|
20 |
+
|
21 |
+

|
22 |
+
|
23 |
+
Llama-3.1-Nemotron-Ultra-253B-v1 is a large language model (LLM) which is a derivative of [Meta Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct) (AKA the *reference model*). It is a reasoning model that is post trained for reasoning, human chat preferences, and tasks, such as RAG and tool calling. The model supports a context length of 128K tokens. This model fits on a single 8xH100 node for inference.
|
24 |
+
|
25 |
+
Llama-3.1-Nemotron-Ultra-253B-v1 is a model which offers a great tradeoff between model accuracy and efficiency. Efficiency (throughput) directly translates to savings. Using a novel Neural Architecture Search (NAS) approach, we greatly reduce the model’s memory footprint, enabling larger workloads, as well as reducing the number of GPUs required to run the model in a data center environment. This NAS approach enables the selection of a desired point in the accuracy-efficiency tradeoff. Furthermore, by using a novel method to vertically compress the model (see details [here](https://arxiv.org/abs/2503.18908)), it also offers a significant improvement in latency.
|
26 |
+
|
27 |
+
The model underwent a multi-phase post-training process to enhance both its reasoning and non-reasoning capabilities. This includes a supervised fine-tuning stage for Math, Code, Reasoning, Chat, and Tool Calling as well as multiple reinforcement learning (RL) stages using Group Relative Policy Optimization (GRPO) algorithms for reasoning, chat, and instruction-following.
|
28 |
+
|
29 |
+
This model is ready for commercial use.
|
30 |
+
|
31 |
+
For more details on how the model was trained, please see [this blog](https://developer.nvidia.com/blog/build-enterprise-ai-agents-with-advanced-open-nvidia-llama-nemotron-reasoning-models/).
|
32 |
+
|
33 |
+

|
34 |
+
|
35 |
+
This model is part of the Llama Nemotron Collection. You can find the other model(s) in this family here:
|
36 |
+
|
37 |
+
- [Llama-3.1-Nemotron-Nano-8B-v1](https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-8B-v1)
|
38 |
+
- [Llama-3.3-Nemotron-Super-49B-v1](https://huggingface.co/nvidia/Llama-3\_3-Nemotron-Super-49B-v1)
|
39 |
+
|
40 |
+
## License/Terms of Use
|
41 |
+
|
42 |
+
GOVERNING TERMS: Your use of this model is governed by the [NVIDIA Open Model License.](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/) Additional Information: [Llama 3.1 Community License Agreement](https://www.llama.com/llama3\_1/license/). Built with Llama.
|
43 |
+
|
44 |
+
**Model Developer:** NVIDIA
|
45 |
+
|
46 |
+
**Model Dates:** Trained between November 2024 and April 2025
|
47 |
+
|
48 |
+
**Data Freshness:** The pretraining data has a cutoff of 2023 per Llama-3.1-405B-Instruct
|
49 |
+
|
50 |
+
### Use Case:
|
51 |
+
Developers designing AI Agent systems, chatbots, RAG systems, and other AI-powered applications. Also suitable for typical instruction-following tasks.
|
52 |
+
|
53 |
+
### Release Date:
|
54 |
+
2025-04-07
|
55 |
+
|
56 |
+
## References
|
57 |
+
|
58 |
+
* [\[2502.00203\] Reward-aware Preference Optimization: A Unified Mathematical Framework for Model Alignment](https://arxiv.org/abs/2502.00203)
|
59 |
+
* [\[2411.19146\]Puzzle: Distillation-Based NAS for Inference-Optimized LLMs](https://arxiv.org/abs/2411.19146)
|
60 |
+
* [\[2503.18908\]FFN Fusion: Rethinking Sequential Computation in Large Language Models](https://arxiv.org/abs/2503.18908)
|
61 |
+
|
62 |
+
## Model Architecture
|
63 |
+
**Architecture Type:** Dense decoder-only Transformer model
|
64 |
+
**Network Architecture:** Llama-3.1-405B-Instruct, customized through Neural Architecture Search (NAS)
|
65 |
+
|
66 |
+
**This model was developed based on Llama-3.1-405B-Instruct <br>
|
67 |
+
** This model has 253B model parameters. <br>
|
68 |
+
|
69 |
+
The model is a derivative of Llama 3.1-405B-Instruct, using Neural Architecture Search (NAS). The NAS algorithm results in non-standard and non-repetitive blocks. This includes the following:
|
70 |
+
|
71 |
+
* Skip attention: In some blocks, the attention is skipped entirely, or replaced with a single linear layer.
|
72 |
+
* Variable FFN: The expansion/compression ratio in the FFN layer is different between blocks.
|
73 |
+
* FFN Fusion: When several consecutive attention layers are skipped, which can result in a sequence of multiple FFNs, that sequence of FFNs are fused into a smaller number of wider FFN layers.
|
74 |
+
|
75 |
+
For each block of the reference model, we create multiple variants providing different tradeoffs of quality vs. computational complexity, discussed in more depth below. We then search over the blocks to create a model which meets the required throughput and memory while minimizing the quality degradation. To recover performance, the model initially undergoes knowledge distillation (KD) for 65 billion tokens. This is followed by a continual pretraining (CPT) phase for 88 billion tokens.
|
76 |
+
|
77 |
+
## Intended use
|
78 |
+
|
79 |
+
Llama-3.1-Nemotron-Ultra-253B-v1 is a general purpose reasoning and chat model intended to be used in English and coding languages. Other non-English languages (German, French, Italian, Portuguese, Hindi, Spanish, and Thai) are also supported.
|
80 |
+
|
81 |
+
## Input
|
82 |
+
- **Input Type:** Text
|
83 |
+
- **Input Format:** String
|
84 |
+
- **Input Parameters:** One-Dimensional (1D)
|
85 |
+
- **Other Properties Related to Input:** Context length up to 131,072 tokens
|
86 |
+
|
87 |
+
## Output
|
88 |
+
- **Output Type:** Text
|
89 |
+
- **Output Format:** String
|
90 |
+
- **Output Parameters:** One-Dimensional (1D)
|
91 |
+
- **Other Properties Related to Output:** Context length up to 131,072 tokens
|
92 |
+
|
93 |
+
## Software Integration
|
94 |
+
- **Runtime Engine:** Transformers
|
95 |
+
- **Recommended Hardware Microarchitecture Compatibility:**
|
96 |
+
- NVIDIA Hopper
|
97 |
+
- NVIDIA Ampere
|
98 |
+
- **Preferred Operating System(s):** Linux
|
99 |
+
|
100 |
+
## Model Version
|
101 |
+
1.0 (4/7/2025)
|
102 |
+
|
103 |
+
## Quick Start and Usage Recommendations:
|
104 |
+
|
105 |
+
1. Reasoning mode (ON/OFF) is controlled via the system prompt, which must be set as shown in the example below. All instructions should be contained within the user prompt
|
106 |
+
2. We recommend setting temperature to \`0.6\`, and Top P to \`0.95\` for Reasoning ON mode
|
107 |
+
3. We recommend using greedy decoding (temperature 0\) for Reasoning OFF mode
|
108 |
+
4. We do not recommend to add additional system prompts besides the control prompt, all instructions should be put into user query
|
109 |
+
5. We have provided a list of prompts to use for evaluation for each benchmark where a specific template is required
|
110 |
+
|
111 |
+
You can try this model out through the preview API, using this link: [Llama-3\_1-Nemotron-Ultra-253B-v1](https://build.nvidia.com/nvidia/llama-3\_1-nemotron-ultra-253b-v1).
|
112 |
+
|
113 |
+
### Use It with Transformers
|
114 |
+
See the snippet below for usage with [Hugging Face Transformers](https://huggingface.co/docs/transformers/main/en/index) library. Reasoning mode (ON/OFF) is controlled via system prompt. Please see the example below
|
115 |
+
|
116 |
+
We recommend using the *transformers* package with version 4.48.3.
|
117 |
+
Example of reasoning on:
|
118 |
+
|
119 |
+
```py
|
120 |
+
import torch
|
121 |
+
import transformers
|
122 |
+
|
123 |
+
model_id = "nvidia/Llama-3_1-Nemotron-Ultra-253B-v1"
|
124 |
+
model_kwargs = {"torch_dtype": torch.bfloat16, "trust_remote_code": True, "device_map": "auto"}
|
125 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
|
126 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
127 |
+
|
128 |
+
pipeline = transformers.pipeline(
|
129 |
+
"text-generation",
|
130 |
+
model=model_id,
|
131 |
+
tokenizer=tokenizer,
|
132 |
+
max_new_tokens=32768,
|
133 |
+
temperature=0.6,
|
134 |
+
top_p=0.95,
|
135 |
+
**model_kwargs
|
136 |
+
)
|
137 |
+
|
138 |
+
thinking = "on"
|
139 |
+
|
140 |
+
|
141 |
+
print(pipeline([{"role": "system", "content": f"detailed thinking {thinking}"},{"role": "user", "content": "Solve x*(sin(x)+2)=0"}]))
|
142 |
+
```
|
143 |
+
|
144 |
+
Example of reasoning off:
|
145 |
+
|
146 |
+
```py
|
147 |
+
import torch
|
148 |
+
import transformers
|
149 |
+
|
150 |
+
model_id = "nvidia/Llama-3_1-Nemotron-ULtra-253B-v1"
|
151 |
+
model_kwargs = {"torch_dtype": torch.bfloat16, "trust_remote_code": True, "device_map": "auto"}
|
152 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
|
153 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
154 |
+
|
155 |
+
pipeline = transformers.pipeline(
|
156 |
+
"text-generation",
|
157 |
+
model=model_id,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
max_new_tokens=32768,
|
160 |
+
do_sample=False,
|
161 |
+
**model_kwargs
|
162 |
+
)
|
163 |
+
|
164 |
+
thinking = "off"
|
165 |
+
|
166 |
+
|
167 |
+
print(pipeline([{"role": "system", "content": f"detailed thinking {thinking}"},{"role": "user", "content": "Solve x*(sin(x)+2)=0"}]))
|
168 |
+
```
|
169 |
+
|
170 |
+
### Use It with vLLM
|
171 |
+
|
172 |
+
```
|
173 |
+
pip install vllm==0.8.3
|
174 |
+
```
|
175 |
+
An example on how to serve with vLLM:
|
176 |
+
```
|
177 |
+
python3 -m vllm.entrypoints.openai.api_server \
|
178 |
+
--model "nvidia/Llama-3_1-Nemotron-Ultra-253B-v1" \
|
179 |
+
--trust-remote-code \
|
180 |
+
--seed=1 \
|
181 |
+
--host="0.0.0.0" \
|
182 |
+
--port=5000 \
|
183 |
+
--served-model-name "nvidia/Llama-3_1-Nemotron-Ultra-253B-v1" \
|
184 |
+
--tensor-parallel-size=8 \
|
185 |
+
--max-model-len=32768 \
|
186 |
+
--gpu-memory-utilization 0.95 \
|
187 |
+
--enforce-eager
|
188 |
+
```
|
189 |
+
## Inference:
|
190 |
+
**Engine:**
|
191 |
+
|
192 |
+
- Transformers
|
193 |
+
|
194 |
+
**Test Hardware:**
|
195 |
+
- BF16:
|
196 |
+
- 8x NVIDIA H100-80GB
|
197 |
+
- 4x NVIDIA B100
|
198 |
+
- FP 8
|
199 |
+
- 4x NVIDIA H100-80GB
|
200 |
+
|
201 |
+
## Training and Evaluation Datasets
|
202 |
+
|
203 |
+
## Training Datasets
|
204 |
+
|
205 |
+
A large variety of training data was used for the knowledge distillation phase before post-training pipeline, 3 of which included: FineWeb, Buzz-V1.2, and Dolma.
|
206 |
+
|
207 |
+
The data for the multi-stage post-training phases is a compilation of SFT and RL data that supports improvements of math, code, general reasoning, and instruction following capabilities of the original Llama instruct model.
|
208 |
+
|
209 |
+
Prompts have been sourced from either public and open corpus or synthetically generated. Responses were synthetically generated by a variety of models, with some prompts containing responses for both reasoning on and off modes, to train the model to distinguish between two modes. This model was improved with Qwen.
|
210 |
+
|
211 |
+
We have released our [Llama-Nemotron-Post-Training-Dataset](https://huggingface.co/datasets/nvidia/Llama-Nemotron-Post-Training-Dataset) to promote openness and transparency in model development and improvement.
|
212 |
+
|
213 |
+
**Data Collection for Training Datasets:**
|
214 |
+
|
215 |
+
- Hybrid: Automated, Human, Synthetic
|
216 |
+
|
217 |
+
**Data Labeling for Training Datasets:**
|
218 |
+
|
219 |
+
- Hybrid: Automated, Human, Synthetic
|
220 |
+
|
221 |
+
## Evaluation Datasets
|
222 |
+
|
223 |
+
We used the datasets listed in the next section to evaluate Llama-3.1-Nemotron-Ultra-253B-v1.
|
224 |
+
|
225 |
+
Data Collection for Evaluation Datasets:
|
226 |
+
|
227 |
+
- Hybrid: Human/Synthetic
|
228 |
+
|
229 |
+
Data Labeling for Evaluation Datasets:
|
230 |
+
|
231 |
+
- Hybrid: Human/Synthetic/Automatic
|
232 |
+
|
233 |
+
## Evaluation Results
|
234 |
+
*These results contain both Reasoning On, and Reasoning Off. We recommend using temperature=\`0.6\`, top\_p=\`0.95\` for Reasoning On mode, and greedy decoding for Reasoning Off mode. All evaluations are done with 32k sequence length. We run the benchmarks up to 16 times and average the scores to be more accurate.*
|
235 |
+
|
236 |
+
|
237 |
+
> NOTE: Where applicable, a Prompt Template will be provided. While completing benchmarks, please ensure that you are parsing for the correct output format as per the provided prompt in order to reproduce the benchmarks seen below.
|
238 |
+
|
239 |
+
### GPQA
|
240 |
+
|
241 |
+
| Reasoning Mode | pass@1 |
|
242 |
+
|--------------|------------|
|
243 |
+
| Reasoning Off | 56.60 |
|
244 |
+
| Reasoning On | 76.01 |
|
245 |
+
|
246 |
+
User Prompt Template:
|
247 |
+
|
248 |
+
```
|
249 |
+
"What is the correct answer to this question: {question}\nChoices:\nA. {option_A}\nB. {option_B}\nC. {option_C}\nD. {option_D}\nLet's think step by step, and put the final answer (should be a single letter A, B, C, or D) into a \boxed{}"
|
250 |
+
```
|
251 |
+
|
252 |
+
### AIME25
|
253 |
+
|
254 |
+
| Reasoning Mode | pass@1 |
|
255 |
+
|--------------|------------|
|
256 |
+
| Reasoning Off | 16.67 |
|
257 |
+
| Reasoning On | 72.50 |
|
258 |
+
|
259 |
+
User Prompt Template:
|
260 |
+
|
261 |
+
```
|
262 |
+
"Below is a math question. I want you to reason through the steps and then give a final answer. Your final answer should be in \boxed{}.\nQuestion: {question}"
|
263 |
+
```
|
264 |
+
|
265 |
+
### BFCL V2 Live
|
266 |
+
|
267 |
+
| Reasoning Mode | Score |
|
268 |
+
|--------------|------------|
|
269 |
+
| Reasoning Off | 73.62 |
|
270 |
+
| Reasoning On | 74.10 |
|
271 |
+
|
272 |
+
User Prompt Template:
|
273 |
+
|
274 |
+
```
|
275 |
+
You are an expert in composing functions. You are given a question and a set of possible functions.
|
276 |
+
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
|
277 |
+
If none of the function can be used, point it out. If the given question lacks the parameters required by the function,
|
278 |
+
also point it out. You should only return the function call in tools call sections.
|
279 |
+
|
280 |
+
If you decide to invoke any of the function(s), you MUST put it in the format of <TOOLCALL>[func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]</TOOLCALL>
|
281 |
+
|
282 |
+
You SHOULD NOT include any other text in the response.
|
283 |
+
Here is a list of functions in JSON format that you can invoke.
|
284 |
+
|
285 |
+
<AVAILABLE_TOOLS>{functions}</AVAILABLE_TOOLS>
|
286 |
+
|
287 |
+
{user_prompt}
|
288 |
+
```
|
289 |
+
|
290 |
+
### LiveCodeBench (20240801-20250201)
|
291 |
+
|
292 |
+
| Reasoning Mode | pass@1 |
|
293 |
+
|--------------|------------|
|
294 |
+
| Reasoning Off | 29.03 |
|
295 |
+
| Reasoning On | 66.31 |
|
296 |
+
|
297 |
+
User Prompt Template (without starter code):
|
298 |
+
|
299 |
+
````
|
300 |
+
"You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests.
|
301 |
+
|
302 |
+
Question: {prompt}
|
303 |
+
|
304 |
+
Read the inputs from stdin solve the problem and write the answer to stdout (do not directly test on the sample inputs). Enclose your code within delimiters as follows. Ensure that when the python program runs, it reads the inputs, runs the algorithm and writes output to STDOUT.
|
305 |
+
```python
|
306 |
+
# YOUR CODE HERE
|
307 |
+
```
|
308 |
+
````
|
309 |
+
|
310 |
+
User Prompt Template (with starter code):
|
311 |
+
|
312 |
+
````
|
313 |
+
You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests.
|
314 |
+
|
315 |
+
Question: {prompt}
|
316 |
+
|
317 |
+
You will use the following starter code to write the solution to the problem and enclose your code within delimiters.
|
318 |
+
```python
|
319 |
+
{starter_code}
|
320 |
+
```
|
321 |
+
````
|
322 |
+
|
323 |
+
### IFEval
|
324 |
+
|
325 |
+
| Reasoning Mode | Strict:Instruction |
|
326 |
+
|--------------|------------|
|
327 |
+
| Reasoning Off | 88.85 |
|
328 |
+
| Reasoning On | 89.45 |
|
329 |
+
|
330 |
+
### MATH500
|
331 |
+
|
332 |
+
| Reasoning Mode | pass@1 |
|
333 |
+
|--------------|------------|
|
334 |
+
| Reasoning Off | 80.40 |
|
335 |
+
| Reasoning On | 97.00 |
|
336 |
+
|
337 |
+
User Prompt Template:
|
338 |
+
|
339 |
+
```
|
340 |
+
"Below is a math question. I want you to reason through the steps and then give a final answer. Your final answer should be in \boxed{}.\nQuestion: {question}"
|
341 |
+
```
|
342 |
+
|
343 |
+
### JudgeBench
|
344 |
+
|
345 |
+
| Reasoning Mode | Knowledge Score | Reasoning Score | Math Score | Coding Score | Overall Score |
|
346 |
+
|--------------|------------|------------|------------|------------|------------|
|
347 |
+
| Reasoning On | 70.13 | 81.63 | 89.29 | 92.86 | 79.14 |
|
348 |
+
|
349 |
+
## Ethical Considerations:
|
350 |
+
|
351 |
+
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
|
352 |
+
|
353 |
+
For more detailed information on ethical considerations for this model, please see the Model Card++ [Explainability](./EXPLAINABILITY.md), [Bias](./BIAS.md), [Safety & Security](./SAFETY_and_SECURITY.md), and [Privacy](./PRIVACY.md) Subcards.
|
354 |
+
|
355 |
+
Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
|
SAFETY_and_SECURITY.md
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# **Safety & Security**
|
2 |
+
|
3 |
+
|Field:|Response:|
|
4 |
+
|:---:|:---:|
|
5 |
+
|Model Application(s):|Chat, Instruction Following, Chatbot Development, Code Generation, Reasoning|
|
6 |
+
|Describe life critical application (if present):|None Known (please see referenced Known Risks in the Explainability subcard).|
|
7 |
+
|Use Case Restrictions:|Abide by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/). Additional Information: [Llama 3.1 Community License Agreement](https://www.llama.com/llama3\_1/license/). Built with Llama.|
|
8 |
+
|Model and Dataset Restrictions:|The Principle of least privilege (PoLP) is applied limiting access for dataset generation. Restrictions enforce dataset access during training, and dataset license constraints adhered to. Model checkpoints are made available on Hugging Face and NGC, and may become available on cloud providers' model catalog.|
|
__init__.py
ADDED
File without changes
|
accuracy_plot.png
ADDED
![]() |
Git LFS Details
|
block_config.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import json
|
3 |
+
import warnings
|
4 |
+
from dataclasses import dataclass, MISSING
|
5 |
+
from functools import partial
|
6 |
+
from typing import Optional, Any
|
7 |
+
|
8 |
+
|
9 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
10 |
+
class JsonComparable:
|
11 |
+
def to_json(self) -> str:
|
12 |
+
return json.dumps(dataclasses.asdict(self))
|
13 |
+
|
14 |
+
def __eq__(self, other: "JsonComparable") -> bool:
|
15 |
+
return self.to_json() == other.to_json()
|
16 |
+
|
17 |
+
def __hash__(self) -> int:
|
18 |
+
return hash(self.to_json())
|
19 |
+
|
20 |
+
def __lt__(self, other: "JsonComparable") -> bool:
|
21 |
+
return self.to_json() < other.to_json()
|
22 |
+
|
23 |
+
|
24 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
25 |
+
class SubblockConfig(JsonComparable):
|
26 |
+
no_op: bool = False
|
27 |
+
replace_with_linear: bool = False
|
28 |
+
sparsify: Optional[list[str]] = None
|
29 |
+
|
30 |
+
def __post_init__(self):
|
31 |
+
assert not (self.no_op and self.replace_with_linear)
|
32 |
+
|
33 |
+
def _force_setattr(self, name: str, value: Any) -> None:
|
34 |
+
"""
|
35 |
+
Set an attribute even in frozen dataclasses.
|
36 |
+
Use only inside __post_init__!
|
37 |
+
"""
|
38 |
+
object.__setattr__(self, name, value)
|
39 |
+
|
40 |
+
|
41 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
42 |
+
class AttentionConfig(SubblockConfig):
|
43 |
+
n_heads_in_group: Optional[int] = None
|
44 |
+
window_length: Optional[int] = None
|
45 |
+
num_sink_tokens: Optional[int] = None
|
46 |
+
use_prefill_window_in_sink_attention: bool = False
|
47 |
+
unshifted_sink: bool = False
|
48 |
+
|
49 |
+
def __post_init__(self):
|
50 |
+
super().__post_init__()
|
51 |
+
assert not (self.no_op and self.replace_with_linear)
|
52 |
+
|
53 |
+
if self.no_op or self.replace_with_linear:
|
54 |
+
for irrelevant_att in ["n_heads_in_group", "window_length", "num_sink_tokens"]:
|
55 |
+
self._force_setattr(irrelevant_att, None)
|
56 |
+
else:
|
57 |
+
assert self.n_heads_in_group is not None
|
58 |
+
|
59 |
+
if self.is_sink:
|
60 |
+
assert not (self.unshifted_sink and self.use_prefill_window_in_sink_attention), \
|
61 |
+
("Unshifted sink uses its own kind of explicit masking, not standard window. "
|
62 |
+
"Set use_prefill_window_in_sink_attention to False.")
|
63 |
+
assert not (self.num_sink_tokens == 0 and not self.unshifted_sink), \
|
64 |
+
"Fake sink attention with 0 sink tokens is only supported with unshifted_sink=True"
|
65 |
+
|
66 |
+
@property
|
67 |
+
def prefill_sliding_window(self) -> Optional[int]:
|
68 |
+
if self.window_length is not None:
|
69 |
+
if not self.is_sink or self.use_prefill_window_in_sink_attention:
|
70 |
+
return self.window_length
|
71 |
+
return None
|
72 |
+
|
73 |
+
@property
|
74 |
+
def is_sliding(self) -> bool:
|
75 |
+
return self.prefill_sliding_window is not None
|
76 |
+
|
77 |
+
@property
|
78 |
+
def is_sink(self) -> bool:
|
79 |
+
return (
|
80 |
+
(self.window_length is not None)
|
81 |
+
and
|
82 |
+
(self.num_sink_tokens is not None)
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
87 |
+
class FFNConfig(SubblockConfig):
|
88 |
+
ffn_mult: Optional[float] = None
|
89 |
+
|
90 |
+
def __post_init__(self):
|
91 |
+
super().__post_init__()
|
92 |
+
if self.no_op or self.replace_with_linear:
|
93 |
+
self._force_setattr("ffn_mult", None)
|
94 |
+
else:
|
95 |
+
assert self.ffn_mult is not None
|
96 |
+
self._force_setattr("ffn_mult", round(self.ffn_mult, 6))
|
97 |
+
|
98 |
+
|
99 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
100 |
+
class BlockConfig(JsonComparable):
|
101 |
+
attention: AttentionConfig = MISSING
|
102 |
+
ffn: FFNConfig = MISSING
|
103 |
+
|
104 |
+
def __post_init__(self):
|
105 |
+
"""
|
106 |
+
Init subblock dataclasses from dicts
|
107 |
+
"""
|
108 |
+
for subblock_name in dataclasses.fields(self):
|
109 |
+
subblock_config = getattr(self, subblock_name.name)
|
110 |
+
if isinstance(subblock_config, dict):
|
111 |
+
subblock_fields = [field.name for field in dataclasses.fields(subblock_name.type)]
|
112 |
+
unsupported_fields = [field_name for field_name in subblock_config.keys()
|
113 |
+
if field_name not in subblock_fields]
|
114 |
+
if len(unsupported_fields) > 0:
|
115 |
+
warnings.warn(f"Removed unsupported fields {unsupported_fields} from {subblock_name.type.__name__}")
|
116 |
+
subblock_config = {k: v for k, v in subblock_config.items() if k not in unsupported_fields}
|
117 |
+
object.__setattr__(self, subblock_name.name,
|
118 |
+
subblock_name.type(**subblock_config)) # __setattr__ to overcome frozen=True
|
config.json
ADDED
@@ -0,0 +1,2972 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "llama_nemotron_ultra",
|
3 |
+
"architectures": [
|
4 |
+
"DeciLMForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_decilm.DeciLMConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_decilm.DeciLMForCausalLM"
|
11 |
+
},
|
12 |
+
"block_configs": [
|
13 |
+
{
|
14 |
+
"attention": {
|
15 |
+
"n_heads_in_group": 16,
|
16 |
+
"no_op": false,
|
17 |
+
"num_sink_tokens": null,
|
18 |
+
"replace_with_linear": false,
|
19 |
+
"sparsify": null,
|
20 |
+
"unshifted_sink": false,
|
21 |
+
"use_prefill_window_in_sink_attention": false,
|
22 |
+
"window_length": null
|
23 |
+
},
|
24 |
+
"ffn": {
|
25 |
+
"ffn_mult": 0.4875,
|
26 |
+
"no_op": false,
|
27 |
+
"replace_with_linear": false,
|
28 |
+
"sparsify": null
|
29 |
+
}
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"attention": {
|
33 |
+
"n_heads_in_group": 16,
|
34 |
+
"no_op": false,
|
35 |
+
"num_sink_tokens": null,
|
36 |
+
"replace_with_linear": false,
|
37 |
+
"sparsify": null,
|
38 |
+
"unshifted_sink": false,
|
39 |
+
"use_prefill_window_in_sink_attention": false,
|
40 |
+
"window_length": null
|
41 |
+
},
|
42 |
+
"ffn": {
|
43 |
+
"ffn_mult": 0.975,
|
44 |
+
"no_op": false,
|
45 |
+
"replace_with_linear": false,
|
46 |
+
"sparsify": null
|
47 |
+
}
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"attention": {
|
51 |
+
"n_heads_in_group": 16,
|
52 |
+
"no_op": false,
|
53 |
+
"num_sink_tokens": null,
|
54 |
+
"replace_with_linear": false,
|
55 |
+
"sparsify": null,
|
56 |
+
"unshifted_sink": false,
|
57 |
+
"use_prefill_window_in_sink_attention": false,
|
58 |
+
"window_length": null
|
59 |
+
},
|
60 |
+
"ffn": {
|
61 |
+
"ffn_mult": 1.4625,
|
62 |
+
"no_op": false,
|
63 |
+
"replace_with_linear": false,
|
64 |
+
"sparsify": null
|
65 |
+
}
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"attention": {
|
69 |
+
"n_heads_in_group": 16,
|
70 |
+
"no_op": false,
|
71 |
+
"num_sink_tokens": null,
|
72 |
+
"replace_with_linear": false,
|
73 |
+
"sparsify": null,
|
74 |
+
"unshifted_sink": false,
|
75 |
+
"use_prefill_window_in_sink_attention": false,
|
76 |
+
"window_length": null
|
77 |
+
},
|
78 |
+
"ffn": {
|
79 |
+
"ffn_mult": 1.4625,
|
80 |
+
"no_op": false,
|
81 |
+
"replace_with_linear": false,
|
82 |
+
"sparsify": null
|
83 |
+
}
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"attention": {
|
87 |
+
"n_heads_in_group": 16,
|
88 |
+
"no_op": false,
|
89 |
+
"num_sink_tokens": null,
|
90 |
+
"replace_with_linear": false,
|
91 |
+
"sparsify": null,
|
92 |
+
"unshifted_sink": false,
|
93 |
+
"use_prefill_window_in_sink_attention": false,
|
94 |
+
"window_length": null
|
95 |
+
},
|
96 |
+
"ffn": {
|
97 |
+
"ffn_mult": 1.4625,
|
98 |
+
"no_op": false,
|
99 |
+
"replace_with_linear": false,
|
100 |
+
"sparsify": null
|
101 |
+
}
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"attention": {
|
105 |
+
"n_heads_in_group": 16,
|
106 |
+
"no_op": false,
|
107 |
+
"num_sink_tokens": null,
|
108 |
+
"replace_with_linear": false,
|
109 |
+
"sparsify": null,
|
110 |
+
"unshifted_sink": false,
|
111 |
+
"use_prefill_window_in_sink_attention": false,
|
112 |
+
"window_length": null
|
113 |
+
},
|
114 |
+
"ffn": {
|
115 |
+
"ffn_mult": 1.4625,
|
116 |
+
"no_op": false,
|
117 |
+
"replace_with_linear": false,
|
118 |
+
"sparsify": null
|
119 |
+
}
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"attention": {
|
123 |
+
"n_heads_in_group": 16,
|
124 |
+
"no_op": false,
|
125 |
+
"num_sink_tokens": null,
|
126 |
+
"replace_with_linear": false,
|
127 |
+
"sparsify": null,
|
128 |
+
"unshifted_sink": false,
|
129 |
+
"use_prefill_window_in_sink_attention": false,
|
130 |
+
"window_length": null
|
131 |
+
},
|
132 |
+
"ffn": {
|
133 |
+
"ffn_mult": 1.4625,
|
134 |
+
"no_op": false,
|
135 |
+
"replace_with_linear": false,
|
136 |
+
"sparsify": null
|
137 |
+
}
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"attention": {
|
141 |
+
"n_heads_in_group": 16,
|
142 |
+
"no_op": false,
|
143 |
+
"num_sink_tokens": null,
|
144 |
+
"replace_with_linear": false,
|
145 |
+
"sparsify": null,
|
146 |
+
"unshifted_sink": false,
|
147 |
+
"use_prefill_window_in_sink_attention": false,
|
148 |
+
"window_length": null
|
149 |
+
},
|
150 |
+
"ffn": {
|
151 |
+
"ffn_mult": 1.4625,
|
152 |
+
"no_op": false,
|
153 |
+
"replace_with_linear": false,
|
154 |
+
"sparsify": null
|
155 |
+
}
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"attention": {
|
159 |
+
"n_heads_in_group": 16,
|
160 |
+
"no_op": false,
|
161 |
+
"num_sink_tokens": null,
|
162 |
+
"replace_with_linear": false,
|
163 |
+
"sparsify": null,
|
164 |
+
"unshifted_sink": false,
|
165 |
+
"use_prefill_window_in_sink_attention": false,
|
166 |
+
"window_length": null
|
167 |
+
},
|
168 |
+
"ffn": {
|
169 |
+
"ffn_mult": 1.95,
|
170 |
+
"no_op": false,
|
171 |
+
"replace_with_linear": false,
|
172 |
+
"sparsify": null
|
173 |
+
}
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"attention": {
|
177 |
+
"n_heads_in_group": null,
|
178 |
+
"no_op": true,
|
179 |
+
"num_sink_tokens": null,
|
180 |
+
"replace_with_linear": false,
|
181 |
+
"sparsify": null,
|
182 |
+
"unshifted_sink": false,
|
183 |
+
"use_prefill_window_in_sink_attention": false,
|
184 |
+
"window_length": null
|
185 |
+
},
|
186 |
+
"ffn": {
|
187 |
+
"ffn_mult": null,
|
188 |
+
"no_op": true,
|
189 |
+
"replace_with_linear": false,
|
190 |
+
"sparsify": null
|
191 |
+
}
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"attention": {
|
195 |
+
"n_heads_in_group": null,
|
196 |
+
"no_op": true,
|
197 |
+
"num_sink_tokens": null,
|
198 |
+
"replace_with_linear": false,
|
199 |
+
"sparsify": null,
|
200 |
+
"unshifted_sink": false,
|
201 |
+
"use_prefill_window_in_sink_attention": false,
|
202 |
+
"window_length": null
|
203 |
+
},
|
204 |
+
"ffn": {
|
205 |
+
"ffn_mult": null,
|
206 |
+
"no_op": true,
|
207 |
+
"replace_with_linear": false,
|
208 |
+
"sparsify": null
|
209 |
+
}
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"attention": {
|
213 |
+
"n_heads_in_group": null,
|
214 |
+
"no_op": true,
|
215 |
+
"num_sink_tokens": null,
|
216 |
+
"replace_with_linear": false,
|
217 |
+
"sparsify": null,
|
218 |
+
"unshifted_sink": false,
|
219 |
+
"use_prefill_window_in_sink_attention": false,
|
220 |
+
"window_length": null
|
221 |
+
},
|
222 |
+
"ffn": {
|
223 |
+
"ffn_mult": null,
|
224 |
+
"no_op": true,
|
225 |
+
"replace_with_linear": false,
|
226 |
+
"sparsify": null
|
227 |
+
}
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"attention": {
|
231 |
+
"n_heads_in_group": null,
|
232 |
+
"no_op": true,
|
233 |
+
"num_sink_tokens": null,
|
234 |
+
"replace_with_linear": false,
|
235 |
+
"sparsify": null,
|
236 |
+
"unshifted_sink": false,
|
237 |
+
"use_prefill_window_in_sink_attention": false,
|
238 |
+
"window_length": null
|
239 |
+
},
|
240 |
+
"ffn": {
|
241 |
+
"ffn_mult": null,
|
242 |
+
"no_op": true,
|
243 |
+
"replace_with_linear": false,
|
244 |
+
"sparsify": null
|
245 |
+
}
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"attention": {
|
249 |
+
"n_heads_in_group": 16,
|
250 |
+
"no_op": false,
|
251 |
+
"num_sink_tokens": null,
|
252 |
+
"replace_with_linear": false,
|
253 |
+
"sparsify": null,
|
254 |
+
"unshifted_sink": false,
|
255 |
+
"use_prefill_window_in_sink_attention": false,
|
256 |
+
"window_length": null
|
257 |
+
},
|
258 |
+
"ffn": {
|
259 |
+
"ffn_mult": 1.95,
|
260 |
+
"no_op": false,
|
261 |
+
"replace_with_linear": false,
|
262 |
+
"sparsify": null
|
263 |
+
}
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"attention": {
|
267 |
+
"n_heads_in_group": 16,
|
268 |
+
"no_op": false,
|
269 |
+
"num_sink_tokens": null,
|
270 |
+
"replace_with_linear": false,
|
271 |
+
"sparsify": null,
|
272 |
+
"unshifted_sink": false,
|
273 |
+
"use_prefill_window_in_sink_attention": false,
|
274 |
+
"window_length": null
|
275 |
+
},
|
276 |
+
"ffn": {
|
277 |
+
"ffn_mult": 1.95,
|
278 |
+
"no_op": false,
|
279 |
+
"replace_with_linear": false,
|
280 |
+
"sparsify": null
|
281 |
+
}
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"attention": {
|
285 |
+
"n_heads_in_group": 16,
|
286 |
+
"no_op": false,
|
287 |
+
"num_sink_tokens": null,
|
288 |
+
"replace_with_linear": false,
|
289 |
+
"sparsify": null,
|
290 |
+
"unshifted_sink": false,
|
291 |
+
"use_prefill_window_in_sink_attention": false,
|
292 |
+
"window_length": null
|
293 |
+
},
|
294 |
+
"ffn": {
|
295 |
+
"ffn_mult": 1.95,
|
296 |
+
"no_op": false,
|
297 |
+
"replace_with_linear": false,
|
298 |
+
"sparsify": null
|
299 |
+
}
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"attention": {
|
303 |
+
"n_heads_in_group": 16,
|
304 |
+
"no_op": false,
|
305 |
+
"num_sink_tokens": null,
|
306 |
+
"replace_with_linear": false,
|
307 |
+
"sparsify": null,
|
308 |
+
"unshifted_sink": false,
|
309 |
+
"use_prefill_window_in_sink_attention": false,
|
310 |
+
"window_length": null
|
311 |
+
},
|
312 |
+
"ffn": {
|
313 |
+
"ffn_mult": 4.875,
|
314 |
+
"no_op": false,
|
315 |
+
"replace_with_linear": false,
|
316 |
+
"sparsify": null
|
317 |
+
}
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"attention": {
|
321 |
+
"n_heads_in_group": 16,
|
322 |
+
"no_op": false,
|
323 |
+
"num_sink_tokens": null,
|
324 |
+
"replace_with_linear": false,
|
325 |
+
"sparsify": null,
|
326 |
+
"unshifted_sink": false,
|
327 |
+
"use_prefill_window_in_sink_attention": false,
|
328 |
+
"window_length": null
|
329 |
+
},
|
330 |
+
"ffn": {
|
331 |
+
"ffn_mult": 4.875,
|
332 |
+
"no_op": false,
|
333 |
+
"replace_with_linear": false,
|
334 |
+
"sparsify": null
|
335 |
+
}
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"attention": {
|
339 |
+
"n_heads_in_group": null,
|
340 |
+
"no_op": true,
|
341 |
+
"num_sink_tokens": null,
|
342 |
+
"replace_with_linear": false,
|
343 |
+
"sparsify": null,
|
344 |
+
"unshifted_sink": false,
|
345 |
+
"use_prefill_window_in_sink_attention": false,
|
346 |
+
"window_length": null
|
347 |
+
},
|
348 |
+
"ffn": {
|
349 |
+
"ffn_mult": null,
|
350 |
+
"no_op": true,
|
351 |
+
"replace_with_linear": false,
|
352 |
+
"sparsify": null
|
353 |
+
}
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"attention": {
|
357 |
+
"n_heads_in_group": null,
|
358 |
+
"no_op": true,
|
359 |
+
"num_sink_tokens": null,
|
360 |
+
"replace_with_linear": false,
|
361 |
+
"sparsify": null,
|
362 |
+
"unshifted_sink": false,
|
363 |
+
"use_prefill_window_in_sink_attention": false,
|
364 |
+
"window_length": null
|
365 |
+
},
|
366 |
+
"ffn": {
|
367 |
+
"ffn_mult": null,
|
368 |
+
"no_op": true,
|
369 |
+
"replace_with_linear": false,
|
370 |
+
"sparsify": null
|
371 |
+
}
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"attention": {
|
375 |
+
"n_heads_in_group": null,
|
376 |
+
"no_op": true,
|
377 |
+
"num_sink_tokens": null,
|
378 |
+
"replace_with_linear": false,
|
379 |
+
"sparsify": null,
|
380 |
+
"unshifted_sink": false,
|
381 |
+
"use_prefill_window_in_sink_attention": false,
|
382 |
+
"window_length": null
|
383 |
+
},
|
384 |
+
"ffn": {
|
385 |
+
"ffn_mult": null,
|
386 |
+
"no_op": true,
|
387 |
+
"replace_with_linear": false,
|
388 |
+
"sparsify": null
|
389 |
+
}
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"attention": {
|
393 |
+
"n_heads_in_group": null,
|
394 |
+
"no_op": true,
|
395 |
+
"num_sink_tokens": null,
|
396 |
+
"replace_with_linear": false,
|
397 |
+
"sparsify": null,
|
398 |
+
"unshifted_sink": false,
|
399 |
+
"use_prefill_window_in_sink_attention": false,
|
400 |
+
"window_length": null
|
401 |
+
},
|
402 |
+
"ffn": {
|
403 |
+
"ffn_mult": null,
|
404 |
+
"no_op": true,
|
405 |
+
"replace_with_linear": false,
|
406 |
+
"sparsify": null
|
407 |
+
}
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"attention": {
|
411 |
+
"n_heads_in_group": null,
|
412 |
+
"no_op": true,
|
413 |
+
"num_sink_tokens": null,
|
414 |
+
"replace_with_linear": false,
|
415 |
+
"sparsify": null,
|
416 |
+
"unshifted_sink": false,
|
417 |
+
"use_prefill_window_in_sink_attention": false,
|
418 |
+
"window_length": null
|
419 |
+
},
|
420 |
+
"ffn": {
|
421 |
+
"ffn_mult": null,
|
422 |
+
"no_op": true,
|
423 |
+
"replace_with_linear": false,
|
424 |
+
"sparsify": null
|
425 |
+
}
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"attention": {
|
429 |
+
"n_heads_in_group": null,
|
430 |
+
"no_op": true,
|
431 |
+
"num_sink_tokens": null,
|
432 |
+
"replace_with_linear": false,
|
433 |
+
"sparsify": null,
|
434 |
+
"unshifted_sink": false,
|
435 |
+
"use_prefill_window_in_sink_attention": false,
|
436 |
+
"window_length": null
|
437 |
+
},
|
438 |
+
"ffn": {
|
439 |
+
"ffn_mult": null,
|
440 |
+
"no_op": true,
|
441 |
+
"replace_with_linear": false,
|
442 |
+
"sparsify": null
|
443 |
+
}
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"attention": {
|
447 |
+
"n_heads_in_group": 16,
|
448 |
+
"no_op": false,
|
449 |
+
"num_sink_tokens": null,
|
450 |
+
"replace_with_linear": false,
|
451 |
+
"sparsify": null,
|
452 |
+
"unshifted_sink": false,
|
453 |
+
"use_prefill_window_in_sink_attention": false,
|
454 |
+
"window_length": null
|
455 |
+
},
|
456 |
+
"ffn": {
|
457 |
+
"ffn_mult": 4.875,
|
458 |
+
"no_op": false,
|
459 |
+
"replace_with_linear": false,
|
460 |
+
"sparsify": null
|
461 |
+
}
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"attention": {
|
465 |
+
"n_heads_in_group": 16,
|
466 |
+
"no_op": false,
|
467 |
+
"num_sink_tokens": null,
|
468 |
+
"replace_with_linear": false,
|
469 |
+
"sparsify": null,
|
470 |
+
"unshifted_sink": false,
|
471 |
+
"use_prefill_window_in_sink_attention": false,
|
472 |
+
"window_length": null
|
473 |
+
},
|
474 |
+
"ffn": {
|
475 |
+
"ffn_mult": 4.875,
|
476 |
+
"no_op": false,
|
477 |
+
"replace_with_linear": false,
|
478 |
+
"sparsify": null
|
479 |
+
}
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"attention": {
|
483 |
+
"n_heads_in_group": 16,
|
484 |
+
"no_op": false,
|
485 |
+
"num_sink_tokens": null,
|
486 |
+
"replace_with_linear": false,
|
487 |
+
"sparsify": null,
|
488 |
+
"unshifted_sink": false,
|
489 |
+
"use_prefill_window_in_sink_attention": false,
|
490 |
+
"window_length": null
|
491 |
+
},
|
492 |
+
"ffn": {
|
493 |
+
"ffn_mult": 4.875,
|
494 |
+
"no_op": false,
|
495 |
+
"replace_with_linear": false,
|
496 |
+
"sparsify": null
|
497 |
+
}
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"attention": {
|
501 |
+
"n_heads_in_group": null,
|
502 |
+
"no_op": true,
|
503 |
+
"num_sink_tokens": null,
|
504 |
+
"replace_with_linear": false,
|
505 |
+
"sparsify": null,
|
506 |
+
"unshifted_sink": false,
|
507 |
+
"use_prefill_window_in_sink_attention": false,
|
508 |
+
"window_length": null
|
509 |
+
},
|
510 |
+
"ffn": {
|
511 |
+
"ffn_mult": null,
|
512 |
+
"no_op": true,
|
513 |
+
"replace_with_linear": false,
|
514 |
+
"sparsify": null
|
515 |
+
}
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"attention": {
|
519 |
+
"n_heads_in_group": null,
|
520 |
+
"no_op": true,
|
521 |
+
"num_sink_tokens": null,
|
522 |
+
"replace_with_linear": false,
|
523 |
+
"sparsify": null,
|
524 |
+
"unshifted_sink": false,
|
525 |
+
"use_prefill_window_in_sink_attention": false,
|
526 |
+
"window_length": null
|
527 |
+
},
|
528 |
+
"ffn": {
|
529 |
+
"ffn_mult": null,
|
530 |
+
"no_op": true,
|
531 |
+
"replace_with_linear": false,
|
532 |
+
"sparsify": null
|
533 |
+
}
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"attention": {
|
537 |
+
"n_heads_in_group": null,
|
538 |
+
"no_op": true,
|
539 |
+
"num_sink_tokens": null,
|
540 |
+
"replace_with_linear": false,
|
541 |
+
"sparsify": null,
|
542 |
+
"unshifted_sink": false,
|
543 |
+
"use_prefill_window_in_sink_attention": false,
|
544 |
+
"window_length": null
|
545 |
+
},
|
546 |
+
"ffn": {
|
547 |
+
"ffn_mult": null,
|
548 |
+
"no_op": true,
|
549 |
+
"replace_with_linear": false,
|
550 |
+
"sparsify": null
|
551 |
+
}
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"attention": {
|
555 |
+
"n_heads_in_group": null,
|
556 |
+
"no_op": true,
|
557 |
+
"num_sink_tokens": null,
|
558 |
+
"replace_with_linear": false,
|
559 |
+
"sparsify": null,
|
560 |
+
"unshifted_sink": false,
|
561 |
+
"use_prefill_window_in_sink_attention": false,
|
562 |
+
"window_length": null
|
563 |
+
},
|
564 |
+
"ffn": {
|
565 |
+
"ffn_mult": null,
|
566 |
+
"no_op": true,
|
567 |
+
"replace_with_linear": false,
|
568 |
+
"sparsify": null
|
569 |
+
}
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"attention": {
|
573 |
+
"n_heads_in_group": null,
|
574 |
+
"no_op": true,
|
575 |
+
"num_sink_tokens": null,
|
576 |
+
"replace_with_linear": false,
|
577 |
+
"sparsify": null,
|
578 |
+
"unshifted_sink": false,
|
579 |
+
"use_prefill_window_in_sink_attention": false,
|
580 |
+
"window_length": null
|
581 |
+
},
|
582 |
+
"ffn": {
|
583 |
+
"ffn_mult": null,
|
584 |
+
"no_op": true,
|
585 |
+
"replace_with_linear": false,
|
586 |
+
"sparsify": null
|
587 |
+
}
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"attention": {
|
591 |
+
"n_heads_in_group": 16,
|
592 |
+
"no_op": false,
|
593 |
+
"num_sink_tokens": null,
|
594 |
+
"replace_with_linear": false,
|
595 |
+
"sparsify": null,
|
596 |
+
"unshifted_sink": false,
|
597 |
+
"use_prefill_window_in_sink_attention": false,
|
598 |
+
"window_length": null
|
599 |
+
},
|
600 |
+
"ffn": {
|
601 |
+
"ffn_mult": 4.875,
|
602 |
+
"no_op": false,
|
603 |
+
"replace_with_linear": false,
|
604 |
+
"sparsify": null
|
605 |
+
}
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"attention": {
|
609 |
+
"n_heads_in_group": 16,
|
610 |
+
"no_op": false,
|
611 |
+
"num_sink_tokens": null,
|
612 |
+
"replace_with_linear": false,
|
613 |
+
"sparsify": null,
|
614 |
+
"unshifted_sink": false,
|
615 |
+
"use_prefill_window_in_sink_attention": false,
|
616 |
+
"window_length": null
|
617 |
+
},
|
618 |
+
"ffn": {
|
619 |
+
"ffn_mult": 4.875,
|
620 |
+
"no_op": false,
|
621 |
+
"replace_with_linear": false,
|
622 |
+
"sparsify": null
|
623 |
+
}
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"attention": {
|
627 |
+
"n_heads_in_group": 16,
|
628 |
+
"no_op": false,
|
629 |
+
"num_sink_tokens": null,
|
630 |
+
"replace_with_linear": false,
|
631 |
+
"sparsify": null,
|
632 |
+
"unshifted_sink": false,
|
633 |
+
"use_prefill_window_in_sink_attention": false,
|
634 |
+
"window_length": null
|
635 |
+
},
|
636 |
+
"ffn": {
|
637 |
+
"ffn_mult": 4.875,
|
638 |
+
"no_op": false,
|
639 |
+
"replace_with_linear": false,
|
640 |
+
"sparsify": null
|
641 |
+
}
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"attention": {
|
645 |
+
"n_heads_in_group": 16,
|
646 |
+
"no_op": false,
|
647 |
+
"num_sink_tokens": null,
|
648 |
+
"replace_with_linear": false,
|
649 |
+
"sparsify": null,
|
650 |
+
"unshifted_sink": false,
|
651 |
+
"use_prefill_window_in_sink_attention": false,
|
652 |
+
"window_length": null
|
653 |
+
},
|
654 |
+
"ffn": {
|
655 |
+
"ffn_mult": 2.4375,
|
656 |
+
"no_op": false,
|
657 |
+
"replace_with_linear": false,
|
658 |
+
"sparsify": null
|
659 |
+
}
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"attention": {
|
663 |
+
"n_heads_in_group": null,
|
664 |
+
"no_op": true,
|
665 |
+
"num_sink_tokens": null,
|
666 |
+
"replace_with_linear": false,
|
667 |
+
"sparsify": null,
|
668 |
+
"unshifted_sink": false,
|
669 |
+
"use_prefill_window_in_sink_attention": false,
|
670 |
+
"window_length": null
|
671 |
+
},
|
672 |
+
"ffn": {
|
673 |
+
"ffn_mult": null,
|
674 |
+
"no_op": true,
|
675 |
+
"replace_with_linear": false,
|
676 |
+
"sparsify": null
|
677 |
+
}
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"attention": {
|
681 |
+
"n_heads_in_group": null,
|
682 |
+
"no_op": true,
|
683 |
+
"num_sink_tokens": null,
|
684 |
+
"replace_with_linear": false,
|
685 |
+
"sparsify": null,
|
686 |
+
"unshifted_sink": false,
|
687 |
+
"use_prefill_window_in_sink_attention": false,
|
688 |
+
"window_length": null
|
689 |
+
},
|
690 |
+
"ffn": {
|
691 |
+
"ffn_mult": null,
|
692 |
+
"no_op": true,
|
693 |
+
"replace_with_linear": false,
|
694 |
+
"sparsify": null
|
695 |
+
}
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"attention": {
|
699 |
+
"n_heads_in_group": null,
|
700 |
+
"no_op": true,
|
701 |
+
"num_sink_tokens": null,
|
702 |
+
"replace_with_linear": false,
|
703 |
+
"sparsify": null,
|
704 |
+
"unshifted_sink": false,
|
705 |
+
"use_prefill_window_in_sink_attention": false,
|
706 |
+
"window_length": null
|
707 |
+
},
|
708 |
+
"ffn": {
|
709 |
+
"ffn_mult": null,
|
710 |
+
"no_op": true,
|
711 |
+
"replace_with_linear": false,
|
712 |
+
"sparsify": null
|
713 |
+
}
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"attention": {
|
717 |
+
"n_heads_in_group": 16,
|
718 |
+
"no_op": false,
|
719 |
+
"num_sink_tokens": null,
|
720 |
+
"replace_with_linear": false,
|
721 |
+
"sparsify": null,
|
722 |
+
"unshifted_sink": false,
|
723 |
+
"use_prefill_window_in_sink_attention": false,
|
724 |
+
"window_length": null
|
725 |
+
},
|
726 |
+
"ffn": {
|
727 |
+
"ffn_mult": 1.95,
|
728 |
+
"no_op": false,
|
729 |
+
"replace_with_linear": false,
|
730 |
+
"sparsify": null
|
731 |
+
}
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"attention": {
|
735 |
+
"n_heads_in_group": 16,
|
736 |
+
"no_op": false,
|
737 |
+
"num_sink_tokens": null,
|
738 |
+
"replace_with_linear": false,
|
739 |
+
"sparsify": null,
|
740 |
+
"unshifted_sink": false,
|
741 |
+
"use_prefill_window_in_sink_attention": false,
|
742 |
+
"window_length": null
|
743 |
+
},
|
744 |
+
"ffn": {
|
745 |
+
"ffn_mult": 1.95,
|
746 |
+
"no_op": false,
|
747 |
+
"replace_with_linear": false,
|
748 |
+
"sparsify": null
|
749 |
+
}
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"attention": {
|
753 |
+
"n_heads_in_group": 16,
|
754 |
+
"no_op": false,
|
755 |
+
"num_sink_tokens": null,
|
756 |
+
"replace_with_linear": false,
|
757 |
+
"sparsify": null,
|
758 |
+
"unshifted_sink": false,
|
759 |
+
"use_prefill_window_in_sink_attention": false,
|
760 |
+
"window_length": null
|
761 |
+
},
|
762 |
+
"ffn": {
|
763 |
+
"ffn_mult": 1.95,
|
764 |
+
"no_op": false,
|
765 |
+
"replace_with_linear": false,
|
766 |
+
"sparsify": null
|
767 |
+
}
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"attention": {
|
771 |
+
"n_heads_in_group": null,
|
772 |
+
"no_op": true,
|
773 |
+
"num_sink_tokens": null,
|
774 |
+
"replace_with_linear": false,
|
775 |
+
"sparsify": null,
|
776 |
+
"unshifted_sink": false,
|
777 |
+
"use_prefill_window_in_sink_attention": false,
|
778 |
+
"window_length": null
|
779 |
+
},
|
780 |
+
"ffn": {
|
781 |
+
"ffn_mult": 1.95,
|
782 |
+
"no_op": false,
|
783 |
+
"replace_with_linear": false,
|
784 |
+
"sparsify": null
|
785 |
+
}
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"attention": {
|
789 |
+
"n_heads_in_group": 16,
|
790 |
+
"no_op": false,
|
791 |
+
"num_sink_tokens": null,
|
792 |
+
"replace_with_linear": false,
|
793 |
+
"sparsify": null,
|
794 |
+
"unshifted_sink": false,
|
795 |
+
"use_prefill_window_in_sink_attention": false,
|
796 |
+
"window_length": null
|
797 |
+
},
|
798 |
+
"ffn": {
|
799 |
+
"ffn_mult": 4.875,
|
800 |
+
"no_op": false,
|
801 |
+
"replace_with_linear": false,
|
802 |
+
"sparsify": null
|
803 |
+
}
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"attention": {
|
807 |
+
"n_heads_in_group": null,
|
808 |
+
"no_op": true,
|
809 |
+
"num_sink_tokens": null,
|
810 |
+
"replace_with_linear": false,
|
811 |
+
"sparsify": null,
|
812 |
+
"unshifted_sink": false,
|
813 |
+
"use_prefill_window_in_sink_attention": false,
|
814 |
+
"window_length": null
|
815 |
+
},
|
816 |
+
"ffn": {
|
817 |
+
"ffn_mult": 4.875,
|
818 |
+
"no_op": false,
|
819 |
+
"replace_with_linear": false,
|
820 |
+
"sparsify": null
|
821 |
+
}
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"attention": {
|
825 |
+
"n_heads_in_group": null,
|
826 |
+
"no_op": true,
|
827 |
+
"num_sink_tokens": null,
|
828 |
+
"replace_with_linear": false,
|
829 |
+
"sparsify": null,
|
830 |
+
"unshifted_sink": false,
|
831 |
+
"use_prefill_window_in_sink_attention": false,
|
832 |
+
"window_length": null
|
833 |
+
},
|
834 |
+
"ffn": {
|
835 |
+
"ffn_mult": null,
|
836 |
+
"no_op": true,
|
837 |
+
"replace_with_linear": false,
|
838 |
+
"sparsify": null
|
839 |
+
}
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"attention": {
|
843 |
+
"n_heads_in_group": null,
|
844 |
+
"no_op": true,
|
845 |
+
"num_sink_tokens": null,
|
846 |
+
"replace_with_linear": false,
|
847 |
+
"sparsify": null,
|
848 |
+
"unshifted_sink": false,
|
849 |
+
"use_prefill_window_in_sink_attention": false,
|
850 |
+
"window_length": null
|
851 |
+
},
|
852 |
+
"ffn": {
|
853 |
+
"ffn_mult": null,
|
854 |
+
"no_op": true,
|
855 |
+
"replace_with_linear": false,
|
856 |
+
"sparsify": null
|
857 |
+
}
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"attention": {
|
861 |
+
"n_heads_in_group": null,
|
862 |
+
"no_op": true,
|
863 |
+
"num_sink_tokens": null,
|
864 |
+
"replace_with_linear": false,
|
865 |
+
"sparsify": null,
|
866 |
+
"unshifted_sink": false,
|
867 |
+
"use_prefill_window_in_sink_attention": false,
|
868 |
+
"window_length": null
|
869 |
+
},
|
870 |
+
"ffn": {
|
871 |
+
"ffn_mult": null,
|
872 |
+
"no_op": true,
|
873 |
+
"replace_with_linear": false,
|
874 |
+
"sparsify": null
|
875 |
+
}
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"attention": {
|
879 |
+
"n_heads_in_group": null,
|
880 |
+
"no_op": true,
|
881 |
+
"num_sink_tokens": null,
|
882 |
+
"replace_with_linear": false,
|
883 |
+
"sparsify": null,
|
884 |
+
"unshifted_sink": false,
|
885 |
+
"use_prefill_window_in_sink_attention": false,
|
886 |
+
"window_length": null
|
887 |
+
},
|
888 |
+
"ffn": {
|
889 |
+
"ffn_mult": null,
|
890 |
+
"no_op": true,
|
891 |
+
"replace_with_linear": false,
|
892 |
+
"sparsify": null
|
893 |
+
}
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"attention": {
|
897 |
+
"n_heads_in_group": null,
|
898 |
+
"no_op": true,
|
899 |
+
"num_sink_tokens": null,
|
900 |
+
"replace_with_linear": false,
|
901 |
+
"sparsify": null,
|
902 |
+
"unshifted_sink": false,
|
903 |
+
"use_prefill_window_in_sink_attention": false,
|
904 |
+
"window_length": null
|
905 |
+
},
|
906 |
+
"ffn": {
|
907 |
+
"ffn_mult": null,
|
908 |
+
"no_op": true,
|
909 |
+
"replace_with_linear": false,
|
910 |
+
"sparsify": null
|
911 |
+
}
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"attention": {
|
915 |
+
"n_heads_in_group": 16,
|
916 |
+
"no_op": false,
|
917 |
+
"num_sink_tokens": null,
|
918 |
+
"replace_with_linear": false,
|
919 |
+
"sparsify": null,
|
920 |
+
"unshifted_sink": false,
|
921 |
+
"use_prefill_window_in_sink_attention": false,
|
922 |
+
"window_length": null
|
923 |
+
},
|
924 |
+
"ffn": {
|
925 |
+
"ffn_mult": 4.875,
|
926 |
+
"no_op": false,
|
927 |
+
"replace_with_linear": false,
|
928 |
+
"sparsify": null
|
929 |
+
}
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"attention": {
|
933 |
+
"n_heads_in_group": 16,
|
934 |
+
"no_op": false,
|
935 |
+
"num_sink_tokens": null,
|
936 |
+
"replace_with_linear": false,
|
937 |
+
"sparsify": null,
|
938 |
+
"unshifted_sink": false,
|
939 |
+
"use_prefill_window_in_sink_attention": false,
|
940 |
+
"window_length": null
|
941 |
+
},
|
942 |
+
"ffn": {
|
943 |
+
"ffn_mult": 4.875,
|
944 |
+
"no_op": false,
|
945 |
+
"replace_with_linear": false,
|
946 |
+
"sparsify": null
|
947 |
+
}
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"attention": {
|
951 |
+
"n_heads_in_group": 16,
|
952 |
+
"no_op": false,
|
953 |
+
"num_sink_tokens": null,
|
954 |
+
"replace_with_linear": false,
|
955 |
+
"sparsify": null,
|
956 |
+
"unshifted_sink": false,
|
957 |
+
"use_prefill_window_in_sink_attention": false,
|
958 |
+
"window_length": null
|
959 |
+
},
|
960 |
+
"ffn": {
|
961 |
+
"ffn_mult": 4.875,
|
962 |
+
"no_op": false,
|
963 |
+
"replace_with_linear": false,
|
964 |
+
"sparsify": null
|
965 |
+
}
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"attention": {
|
969 |
+
"n_heads_in_group": 16,
|
970 |
+
"no_op": false,
|
971 |
+
"num_sink_tokens": null,
|
972 |
+
"replace_with_linear": false,
|
973 |
+
"sparsify": null,
|
974 |
+
"unshifted_sink": false,
|
975 |
+
"use_prefill_window_in_sink_attention": false,
|
976 |
+
"window_length": null
|
977 |
+
},
|
978 |
+
"ffn": {
|
979 |
+
"ffn_mult": 4.875,
|
980 |
+
"no_op": false,
|
981 |
+
"replace_with_linear": false,
|
982 |
+
"sparsify": null
|
983 |
+
}
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"attention": {
|
987 |
+
"n_heads_in_group": null,
|
988 |
+
"no_op": true,
|
989 |
+
"num_sink_tokens": null,
|
990 |
+
"replace_with_linear": false,
|
991 |
+
"sparsify": null,
|
992 |
+
"unshifted_sink": false,
|
993 |
+
"use_prefill_window_in_sink_attention": false,
|
994 |
+
"window_length": null
|
995 |
+
},
|
996 |
+
"ffn": {
|
997 |
+
"ffn_mult": null,
|
998 |
+
"no_op": true,
|
999 |
+
"replace_with_linear": false,
|
1000 |
+
"sparsify": null
|
1001 |
+
}
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"attention": {
|
1005 |
+
"n_heads_in_group": null,
|
1006 |
+
"no_op": true,
|
1007 |
+
"num_sink_tokens": null,
|
1008 |
+
"replace_with_linear": false,
|
1009 |
+
"sparsify": null,
|
1010 |
+
"unshifted_sink": false,
|
1011 |
+
"use_prefill_window_in_sink_attention": false,
|
1012 |
+
"window_length": null
|
1013 |
+
},
|
1014 |
+
"ffn": {
|
1015 |
+
"ffn_mult": null,
|
1016 |
+
"no_op": true,
|
1017 |
+
"replace_with_linear": false,
|
1018 |
+
"sparsify": null
|
1019 |
+
}
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"attention": {
|
1023 |
+
"n_heads_in_group": null,
|
1024 |
+
"no_op": true,
|
1025 |
+
"num_sink_tokens": null,
|
1026 |
+
"replace_with_linear": false,
|
1027 |
+
"sparsify": null,
|
1028 |
+
"unshifted_sink": false,
|
1029 |
+
"use_prefill_window_in_sink_attention": false,
|
1030 |
+
"window_length": null
|
1031 |
+
},
|
1032 |
+
"ffn": {
|
1033 |
+
"ffn_mult": null,
|
1034 |
+
"no_op": true,
|
1035 |
+
"replace_with_linear": false,
|
1036 |
+
"sparsify": null
|
1037 |
+
}
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"attention": {
|
1041 |
+
"n_heads_in_group": null,
|
1042 |
+
"no_op": true,
|
1043 |
+
"num_sink_tokens": null,
|
1044 |
+
"replace_with_linear": false,
|
1045 |
+
"sparsify": null,
|
1046 |
+
"unshifted_sink": false,
|
1047 |
+
"use_prefill_window_in_sink_attention": false,
|
1048 |
+
"window_length": null
|
1049 |
+
},
|
1050 |
+
"ffn": {
|
1051 |
+
"ffn_mult": null,
|
1052 |
+
"no_op": true,
|
1053 |
+
"replace_with_linear": false,
|
1054 |
+
"sparsify": null
|
1055 |
+
}
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"attention": {
|
1059 |
+
"n_heads_in_group": null,
|
1060 |
+
"no_op": true,
|
1061 |
+
"num_sink_tokens": null,
|
1062 |
+
"replace_with_linear": false,
|
1063 |
+
"sparsify": null,
|
1064 |
+
"unshifted_sink": false,
|
1065 |
+
"use_prefill_window_in_sink_attention": false,
|
1066 |
+
"window_length": null
|
1067 |
+
},
|
1068 |
+
"ffn": {
|
1069 |
+
"ffn_mult": null,
|
1070 |
+
"no_op": true,
|
1071 |
+
"replace_with_linear": false,
|
1072 |
+
"sparsify": null
|
1073 |
+
}
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"attention": {
|
1077 |
+
"n_heads_in_group": 16,
|
1078 |
+
"no_op": false,
|
1079 |
+
"num_sink_tokens": null,
|
1080 |
+
"replace_with_linear": false,
|
1081 |
+
"sparsify": null,
|
1082 |
+
"unshifted_sink": false,
|
1083 |
+
"use_prefill_window_in_sink_attention": false,
|
1084 |
+
"window_length": null
|
1085 |
+
},
|
1086 |
+
"ffn": {
|
1087 |
+
"ffn_mult": 4.875,
|
1088 |
+
"no_op": false,
|
1089 |
+
"replace_with_linear": false,
|
1090 |
+
"sparsify": null
|
1091 |
+
}
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"attention": {
|
1095 |
+
"n_heads_in_group": 16,
|
1096 |
+
"no_op": false,
|
1097 |
+
"num_sink_tokens": null,
|
1098 |
+
"replace_with_linear": false,
|
1099 |
+
"sparsify": null,
|
1100 |
+
"unshifted_sink": false,
|
1101 |
+
"use_prefill_window_in_sink_attention": false,
|
1102 |
+
"window_length": null
|
1103 |
+
},
|
1104 |
+
"ffn": {
|
1105 |
+
"ffn_mult": 4.875,
|
1106 |
+
"no_op": false,
|
1107 |
+
"replace_with_linear": false,
|
1108 |
+
"sparsify": null
|
1109 |
+
}
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"attention": {
|
1113 |
+
"n_heads_in_group": 16,
|
1114 |
+
"no_op": false,
|
1115 |
+
"num_sink_tokens": null,
|
1116 |
+
"replace_with_linear": false,
|
1117 |
+
"sparsify": null,
|
1118 |
+
"unshifted_sink": false,
|
1119 |
+
"use_prefill_window_in_sink_attention": false,
|
1120 |
+
"window_length": null
|
1121 |
+
},
|
1122 |
+
"ffn": {
|
1123 |
+
"ffn_mult": 4.875,
|
1124 |
+
"no_op": false,
|
1125 |
+
"replace_with_linear": false,
|
1126 |
+
"sparsify": null
|
1127 |
+
}
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"attention": {
|
1131 |
+
"n_heads_in_group": 16,
|
1132 |
+
"no_op": false,
|
1133 |
+
"num_sink_tokens": null,
|
1134 |
+
"replace_with_linear": false,
|
1135 |
+
"sparsify": null,
|
1136 |
+
"unshifted_sink": false,
|
1137 |
+
"use_prefill_window_in_sink_attention": false,
|
1138 |
+
"window_length": null
|
1139 |
+
},
|
1140 |
+
"ffn": {
|
1141 |
+
"ffn_mult": 4.875,
|
1142 |
+
"no_op": false,
|
1143 |
+
"replace_with_linear": false,
|
1144 |
+
"sparsify": null
|
1145 |
+
}
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"attention": {
|
1149 |
+
"n_heads_in_group": null,
|
1150 |
+
"no_op": true,
|
1151 |
+
"num_sink_tokens": null,
|
1152 |
+
"replace_with_linear": false,
|
1153 |
+
"sparsify": null,
|
1154 |
+
"unshifted_sink": false,
|
1155 |
+
"use_prefill_window_in_sink_attention": false,
|
1156 |
+
"window_length": null
|
1157 |
+
},
|
1158 |
+
"ffn": {
|
1159 |
+
"ffn_mult": null,
|
1160 |
+
"no_op": true,
|
1161 |
+
"replace_with_linear": false,
|
1162 |
+
"sparsify": null
|
1163 |
+
}
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"attention": {
|
1167 |
+
"n_heads_in_group": null,
|
1168 |
+
"no_op": true,
|
1169 |
+
"num_sink_tokens": null,
|
1170 |
+
"replace_with_linear": false,
|
1171 |
+
"sparsify": null,
|
1172 |
+
"unshifted_sink": false,
|
1173 |
+
"use_prefill_window_in_sink_attention": false,
|
1174 |
+
"window_length": null
|
1175 |
+
},
|
1176 |
+
"ffn": {
|
1177 |
+
"ffn_mult": null,
|
1178 |
+
"no_op": true,
|
1179 |
+
"replace_with_linear": false,
|
1180 |
+
"sparsify": null
|
1181 |
+
}
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"attention": {
|
1185 |
+
"n_heads_in_group": null,
|
1186 |
+
"no_op": true,
|
1187 |
+
"num_sink_tokens": null,
|
1188 |
+
"replace_with_linear": false,
|
1189 |
+
"sparsify": null,
|
1190 |
+
"unshifted_sink": false,
|
1191 |
+
"use_prefill_window_in_sink_attention": false,
|
1192 |
+
"window_length": null
|
1193 |
+
},
|
1194 |
+
"ffn": {
|
1195 |
+
"ffn_mult": null,
|
1196 |
+
"no_op": true,
|
1197 |
+
"replace_with_linear": false,
|
1198 |
+
"sparsify": null
|
1199 |
+
}
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"attention": {
|
1203 |
+
"n_heads_in_group": null,
|
1204 |
+
"no_op": true,
|
1205 |
+
"num_sink_tokens": null,
|
1206 |
+
"replace_with_linear": false,
|
1207 |
+
"sparsify": null,
|
1208 |
+
"unshifted_sink": false,
|
1209 |
+
"use_prefill_window_in_sink_attention": false,
|
1210 |
+
"window_length": null
|
1211 |
+
},
|
1212 |
+
"ffn": {
|
1213 |
+
"ffn_mult": null,
|
1214 |
+
"no_op": true,
|
1215 |
+
"replace_with_linear": false,
|
1216 |
+
"sparsify": null
|
1217 |
+
}
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"attention": {
|
1221 |
+
"n_heads_in_group": null,
|
1222 |
+
"no_op": true,
|
1223 |
+
"num_sink_tokens": null,
|
1224 |
+
"replace_with_linear": false,
|
1225 |
+
"sparsify": null,
|
1226 |
+
"unshifted_sink": false,
|
1227 |
+
"use_prefill_window_in_sink_attention": false,
|
1228 |
+
"window_length": null
|
1229 |
+
},
|
1230 |
+
"ffn": {
|
1231 |
+
"ffn_mult": null,
|
1232 |
+
"no_op": true,
|
1233 |
+
"replace_with_linear": false,
|
1234 |
+
"sparsify": null
|
1235 |
+
}
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"attention": {
|
1239 |
+
"n_heads_in_group": 16,
|
1240 |
+
"no_op": false,
|
1241 |
+
"num_sink_tokens": null,
|
1242 |
+
"replace_with_linear": false,
|
1243 |
+
"sparsify": null,
|
1244 |
+
"unshifted_sink": false,
|
1245 |
+
"use_prefill_window_in_sink_attention": false,
|
1246 |
+
"window_length": null
|
1247 |
+
},
|
1248 |
+
"ffn": {
|
1249 |
+
"ffn_mult": 4.875,
|
1250 |
+
"no_op": false,
|
1251 |
+
"replace_with_linear": false,
|
1252 |
+
"sparsify": null
|
1253 |
+
}
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"attention": {
|
1257 |
+
"n_heads_in_group": 16,
|
1258 |
+
"no_op": false,
|
1259 |
+
"num_sink_tokens": null,
|
1260 |
+
"replace_with_linear": false,
|
1261 |
+
"sparsify": null,
|
1262 |
+
"unshifted_sink": false,
|
1263 |
+
"use_prefill_window_in_sink_attention": false,
|
1264 |
+
"window_length": null
|
1265 |
+
},
|
1266 |
+
"ffn": {
|
1267 |
+
"ffn_mult": 4.875,
|
1268 |
+
"no_op": false,
|
1269 |
+
"replace_with_linear": false,
|
1270 |
+
"sparsify": null
|
1271 |
+
}
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"attention": {
|
1275 |
+
"n_heads_in_group": 16,
|
1276 |
+
"no_op": false,
|
1277 |
+
"num_sink_tokens": null,
|
1278 |
+
"replace_with_linear": false,
|
1279 |
+
"sparsify": null,
|
1280 |
+
"unshifted_sink": false,
|
1281 |
+
"use_prefill_window_in_sink_attention": false,
|
1282 |
+
"window_length": null
|
1283 |
+
},
|
1284 |
+
"ffn": {
|
1285 |
+
"ffn_mult": 4.875,
|
1286 |
+
"no_op": false,
|
1287 |
+
"replace_with_linear": false,
|
1288 |
+
"sparsify": null
|
1289 |
+
}
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"attention": {
|
1293 |
+
"n_heads_in_group": 16,
|
1294 |
+
"no_op": false,
|
1295 |
+
"num_sink_tokens": null,
|
1296 |
+
"replace_with_linear": false,
|
1297 |
+
"sparsify": null,
|
1298 |
+
"unshifted_sink": false,
|
1299 |
+
"use_prefill_window_in_sink_attention": false,
|
1300 |
+
"window_length": null
|
1301 |
+
},
|
1302 |
+
"ffn": {
|
1303 |
+
"ffn_mult": 4.875,
|
1304 |
+
"no_op": false,
|
1305 |
+
"replace_with_linear": false,
|
1306 |
+
"sparsify": null
|
1307 |
+
}
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"attention": {
|
1311 |
+
"n_heads_in_group": null,
|
1312 |
+
"no_op": true,
|
1313 |
+
"num_sink_tokens": null,
|
1314 |
+
"replace_with_linear": false,
|
1315 |
+
"sparsify": null,
|
1316 |
+
"unshifted_sink": false,
|
1317 |
+
"use_prefill_window_in_sink_attention": false,
|
1318 |
+
"window_length": null
|
1319 |
+
},
|
1320 |
+
"ffn": {
|
1321 |
+
"ffn_mult": null,
|
1322 |
+
"no_op": true,
|
1323 |
+
"replace_with_linear": false,
|
1324 |
+
"sparsify": null
|
1325 |
+
}
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"attention": {
|
1329 |
+
"n_heads_in_group": null,
|
1330 |
+
"no_op": true,
|
1331 |
+
"num_sink_tokens": null,
|
1332 |
+
"replace_with_linear": false,
|
1333 |
+
"sparsify": null,
|
1334 |
+
"unshifted_sink": false,
|
1335 |
+
"use_prefill_window_in_sink_attention": false,
|
1336 |
+
"window_length": null
|
1337 |
+
},
|
1338 |
+
"ffn": {
|
1339 |
+
"ffn_mult": null,
|
1340 |
+
"no_op": true,
|
1341 |
+
"replace_with_linear": false,
|
1342 |
+
"sparsify": null
|
1343 |
+
}
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"attention": {
|
1347 |
+
"n_heads_in_group": null,
|
1348 |
+
"no_op": true,
|
1349 |
+
"num_sink_tokens": null,
|
1350 |
+
"replace_with_linear": false,
|
1351 |
+
"sparsify": null,
|
1352 |
+
"unshifted_sink": false,
|
1353 |
+
"use_prefill_window_in_sink_attention": false,
|
1354 |
+
"window_length": null
|
1355 |
+
},
|
1356 |
+
"ffn": {
|
1357 |
+
"ffn_mult": null,
|
1358 |
+
"no_op": true,
|
1359 |
+
"replace_with_linear": false,
|
1360 |
+
"sparsify": null
|
1361 |
+
}
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"attention": {
|
1365 |
+
"n_heads_in_group": null,
|
1366 |
+
"no_op": true,
|
1367 |
+
"num_sink_tokens": null,
|
1368 |
+
"replace_with_linear": false,
|
1369 |
+
"sparsify": null,
|
1370 |
+
"unshifted_sink": false,
|
1371 |
+
"use_prefill_window_in_sink_attention": false,
|
1372 |
+
"window_length": null
|
1373 |
+
},
|
1374 |
+
"ffn": {
|
1375 |
+
"ffn_mult": null,
|
1376 |
+
"no_op": true,
|
1377 |
+
"replace_with_linear": false,
|
1378 |
+
"sparsify": null
|
1379 |
+
}
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"attention": {
|
1383 |
+
"n_heads_in_group": null,
|
1384 |
+
"no_op": true,
|
1385 |
+
"num_sink_tokens": null,
|
1386 |
+
"replace_with_linear": false,
|
1387 |
+
"sparsify": null,
|
1388 |
+
"unshifted_sink": false,
|
1389 |
+
"use_prefill_window_in_sink_attention": false,
|
1390 |
+
"window_length": null
|
1391 |
+
},
|
1392 |
+
"ffn": {
|
1393 |
+
"ffn_mult": null,
|
1394 |
+
"no_op": true,
|
1395 |
+
"replace_with_linear": false,
|
1396 |
+
"sparsify": null
|
1397 |
+
}
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"attention": {
|
1401 |
+
"n_heads_in_group": 16,
|
1402 |
+
"no_op": false,
|
1403 |
+
"num_sink_tokens": null,
|
1404 |
+
"replace_with_linear": false,
|
1405 |
+
"sparsify": null,
|
1406 |
+
"unshifted_sink": false,
|
1407 |
+
"use_prefill_window_in_sink_attention": false,
|
1408 |
+
"window_length": null
|
1409 |
+
},
|
1410 |
+
"ffn": {
|
1411 |
+
"ffn_mult": 4.875,
|
1412 |
+
"no_op": false,
|
1413 |
+
"replace_with_linear": false,
|
1414 |
+
"sparsify": null
|
1415 |
+
}
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"attention": {
|
1419 |
+
"n_heads_in_group": 16,
|
1420 |
+
"no_op": false,
|
1421 |
+
"num_sink_tokens": null,
|
1422 |
+
"replace_with_linear": false,
|
1423 |
+
"sparsify": null,
|
1424 |
+
"unshifted_sink": false,
|
1425 |
+
"use_prefill_window_in_sink_attention": false,
|
1426 |
+
"window_length": null
|
1427 |
+
},
|
1428 |
+
"ffn": {
|
1429 |
+
"ffn_mult": 4.875,
|
1430 |
+
"no_op": false,
|
1431 |
+
"replace_with_linear": false,
|
1432 |
+
"sparsify": null
|
1433 |
+
}
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"attention": {
|
1437 |
+
"n_heads_in_group": 16,
|
1438 |
+
"no_op": false,
|
1439 |
+
"num_sink_tokens": null,
|
1440 |
+
"replace_with_linear": false,
|
1441 |
+
"sparsify": null,
|
1442 |
+
"unshifted_sink": false,
|
1443 |
+
"use_prefill_window_in_sink_attention": false,
|
1444 |
+
"window_length": null
|
1445 |
+
},
|
1446 |
+
"ffn": {
|
1447 |
+
"ffn_mult": 4.875,
|
1448 |
+
"no_op": false,
|
1449 |
+
"replace_with_linear": false,
|
1450 |
+
"sparsify": null
|
1451 |
+
}
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"attention": {
|
1455 |
+
"n_heads_in_group": 16,
|
1456 |
+
"no_op": false,
|
1457 |
+
"num_sink_tokens": null,
|
1458 |
+
"replace_with_linear": false,
|
1459 |
+
"sparsify": null,
|
1460 |
+
"unshifted_sink": false,
|
1461 |
+
"use_prefill_window_in_sink_attention": false,
|
1462 |
+
"window_length": null
|
1463 |
+
},
|
1464 |
+
"ffn": {
|
1465 |
+
"ffn_mult": 4.875,
|
1466 |
+
"no_op": false,
|
1467 |
+
"replace_with_linear": false,
|
1468 |
+
"sparsify": null
|
1469 |
+
}
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"attention": {
|
1473 |
+
"n_heads_in_group": null,
|
1474 |
+
"no_op": true,
|
1475 |
+
"num_sink_tokens": null,
|
1476 |
+
"replace_with_linear": false,
|
1477 |
+
"sparsify": null,
|
1478 |
+
"unshifted_sink": false,
|
1479 |
+
"use_prefill_window_in_sink_attention": false,
|
1480 |
+
"window_length": null
|
1481 |
+
},
|
1482 |
+
"ffn": {
|
1483 |
+
"ffn_mult": null,
|
1484 |
+
"no_op": true,
|
1485 |
+
"replace_with_linear": false,
|
1486 |
+
"sparsify": null
|
1487 |
+
}
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"attention": {
|
1491 |
+
"n_heads_in_group": null,
|
1492 |
+
"no_op": true,
|
1493 |
+
"num_sink_tokens": null,
|
1494 |
+
"replace_with_linear": false,
|
1495 |
+
"sparsify": null,
|
1496 |
+
"unshifted_sink": false,
|
1497 |
+
"use_prefill_window_in_sink_attention": false,
|
1498 |
+
"window_length": null
|
1499 |
+
},
|
1500 |
+
"ffn": {
|
1501 |
+
"ffn_mult": null,
|
1502 |
+
"no_op": true,
|
1503 |
+
"replace_with_linear": false,
|
1504 |
+
"sparsify": null
|
1505 |
+
}
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"attention": {
|
1509 |
+
"n_heads_in_group": null,
|
1510 |
+
"no_op": true,
|
1511 |
+
"num_sink_tokens": null,
|
1512 |
+
"replace_with_linear": false,
|
1513 |
+
"sparsify": null,
|
1514 |
+
"unshifted_sink": false,
|
1515 |
+
"use_prefill_window_in_sink_attention": false,
|
1516 |
+
"window_length": null
|
1517 |
+
},
|
1518 |
+
"ffn": {
|
1519 |
+
"ffn_mult": null,
|
1520 |
+
"no_op": true,
|
1521 |
+
"replace_with_linear": false,
|
1522 |
+
"sparsify": null
|
1523 |
+
}
|
1524 |
+
},
|
1525 |
+
{
|
1526 |
+
"attention": {
|
1527 |
+
"n_heads_in_group": null,
|
1528 |
+
"no_op": true,
|
1529 |
+
"num_sink_tokens": null,
|
1530 |
+
"replace_with_linear": false,
|
1531 |
+
"sparsify": null,
|
1532 |
+
"unshifted_sink": false,
|
1533 |
+
"use_prefill_window_in_sink_attention": false,
|
1534 |
+
"window_length": null
|
1535 |
+
},
|
1536 |
+
"ffn": {
|
1537 |
+
"ffn_mult": null,
|
1538 |
+
"no_op": true,
|
1539 |
+
"replace_with_linear": false,
|
1540 |
+
"sparsify": null
|
1541 |
+
}
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"attention": {
|
1545 |
+
"n_heads_in_group": null,
|
1546 |
+
"no_op": true,
|
1547 |
+
"num_sink_tokens": null,
|
1548 |
+
"replace_with_linear": false,
|
1549 |
+
"sparsify": null,
|
1550 |
+
"unshifted_sink": false,
|
1551 |
+
"use_prefill_window_in_sink_attention": false,
|
1552 |
+
"window_length": null
|
1553 |
+
},
|
1554 |
+
"ffn": {
|
1555 |
+
"ffn_mult": null,
|
1556 |
+
"no_op": true,
|
1557 |
+
"replace_with_linear": false,
|
1558 |
+
"sparsify": null
|
1559 |
+
}
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"attention": {
|
1563 |
+
"n_heads_in_group": 16,
|
1564 |
+
"no_op": false,
|
1565 |
+
"num_sink_tokens": null,
|
1566 |
+
"replace_with_linear": false,
|
1567 |
+
"sparsify": null,
|
1568 |
+
"unshifted_sink": false,
|
1569 |
+
"use_prefill_window_in_sink_attention": false,
|
1570 |
+
"window_length": null
|
1571 |
+
},
|
1572 |
+
"ffn": {
|
1573 |
+
"ffn_mult": 4.875,
|
1574 |
+
"no_op": false,
|
1575 |
+
"replace_with_linear": false,
|
1576 |
+
"sparsify": null
|
1577 |
+
}
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"attention": {
|
1581 |
+
"n_heads_in_group": 16,
|
1582 |
+
"no_op": false,
|
1583 |
+
"num_sink_tokens": null,
|
1584 |
+
"replace_with_linear": false,
|
1585 |
+
"sparsify": null,
|
1586 |
+
"unshifted_sink": false,
|
1587 |
+
"use_prefill_window_in_sink_attention": false,
|
1588 |
+
"window_length": null
|
1589 |
+
},
|
1590 |
+
"ffn": {
|
1591 |
+
"ffn_mult": 3.4125,
|
1592 |
+
"no_op": false,
|
1593 |
+
"replace_with_linear": false,
|
1594 |
+
"sparsify": null
|
1595 |
+
}
|
1596 |
+
},
|
1597 |
+
{
|
1598 |
+
"attention": {
|
1599 |
+
"n_heads_in_group": 16,
|
1600 |
+
"no_op": false,
|
1601 |
+
"num_sink_tokens": null,
|
1602 |
+
"replace_with_linear": false,
|
1603 |
+
"sparsify": null,
|
1604 |
+
"unshifted_sink": false,
|
1605 |
+
"use_prefill_window_in_sink_attention": false,
|
1606 |
+
"window_length": null
|
1607 |
+
},
|
1608 |
+
"ffn": {
|
1609 |
+
"ffn_mult": 3.4125,
|
1610 |
+
"no_op": false,
|
1611 |
+
"replace_with_linear": false,
|
1612 |
+
"sparsify": null
|
1613 |
+
}
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"attention": {
|
1617 |
+
"n_heads_in_group": 16,
|
1618 |
+
"no_op": false,
|
1619 |
+
"num_sink_tokens": null,
|
1620 |
+
"replace_with_linear": false,
|
1621 |
+
"sparsify": null,
|
1622 |
+
"unshifted_sink": false,
|
1623 |
+
"use_prefill_window_in_sink_attention": false,
|
1624 |
+
"window_length": null
|
1625 |
+
},
|
1626 |
+
"ffn": {
|
1627 |
+
"ffn_mult": 3.4125,
|
1628 |
+
"no_op": false,
|
1629 |
+
"replace_with_linear": false,
|
1630 |
+
"sparsify": null
|
1631 |
+
}
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"attention": {
|
1635 |
+
"n_heads_in_group": null,
|
1636 |
+
"no_op": true,
|
1637 |
+
"num_sink_tokens": null,
|
1638 |
+
"replace_with_linear": false,
|
1639 |
+
"sparsify": null,
|
1640 |
+
"unshifted_sink": false,
|
1641 |
+
"use_prefill_window_in_sink_attention": false,
|
1642 |
+
"window_length": null
|
1643 |
+
},
|
1644 |
+
"ffn": {
|
1645 |
+
"ffn_mult": null,
|
1646 |
+
"no_op": true,
|
1647 |
+
"replace_with_linear": false,
|
1648 |
+
"sparsify": null
|
1649 |
+
}
|
1650 |
+
},
|
1651 |
+
{
|
1652 |
+
"attention": {
|
1653 |
+
"n_heads_in_group": null,
|
1654 |
+
"no_op": true,
|
1655 |
+
"num_sink_tokens": null,
|
1656 |
+
"replace_with_linear": false,
|
1657 |
+
"sparsify": null,
|
1658 |
+
"unshifted_sink": false,
|
1659 |
+
"use_prefill_window_in_sink_attention": false,
|
1660 |
+
"window_length": null
|
1661 |
+
},
|
1662 |
+
"ffn": {
|
1663 |
+
"ffn_mult": null,
|
1664 |
+
"no_op": true,
|
1665 |
+
"replace_with_linear": false,
|
1666 |
+
"sparsify": null
|
1667 |
+
}
|
1668 |
+
},
|
1669 |
+
{
|
1670 |
+
"attention": {
|
1671 |
+
"n_heads_in_group": 16,
|
1672 |
+
"no_op": false,
|
1673 |
+
"num_sink_tokens": null,
|
1674 |
+
"replace_with_linear": false,
|
1675 |
+
"sparsify": null,
|
1676 |
+
"unshifted_sink": false,
|
1677 |
+
"use_prefill_window_in_sink_attention": false,
|
1678 |
+
"window_length": null
|
1679 |
+
},
|
1680 |
+
"ffn": {
|
1681 |
+
"ffn_mult": 2.925,
|
1682 |
+
"no_op": false,
|
1683 |
+
"replace_with_linear": false,
|
1684 |
+
"sparsify": null
|
1685 |
+
}
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"attention": {
|
1689 |
+
"n_heads_in_group": 16,
|
1690 |
+
"no_op": false,
|
1691 |
+
"num_sink_tokens": null,
|
1692 |
+
"replace_with_linear": false,
|
1693 |
+
"sparsify": null,
|
1694 |
+
"unshifted_sink": false,
|
1695 |
+
"use_prefill_window_in_sink_attention": false,
|
1696 |
+
"window_length": null
|
1697 |
+
},
|
1698 |
+
"ffn": {
|
1699 |
+
"ffn_mult": 2.4375,
|
1700 |
+
"no_op": false,
|
1701 |
+
"replace_with_linear": false,
|
1702 |
+
"sparsify": null
|
1703 |
+
}
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"attention": {
|
1707 |
+
"n_heads_in_group": 16,
|
1708 |
+
"no_op": false,
|
1709 |
+
"num_sink_tokens": null,
|
1710 |
+
"replace_with_linear": false,
|
1711 |
+
"sparsify": null,
|
1712 |
+
"unshifted_sink": false,
|
1713 |
+
"use_prefill_window_in_sink_attention": false,
|
1714 |
+
"window_length": null
|
1715 |
+
},
|
1716 |
+
"ffn": {
|
1717 |
+
"ffn_mult": 2.4375,
|
1718 |
+
"no_op": false,
|
1719 |
+
"replace_with_linear": false,
|
1720 |
+
"sparsify": null
|
1721 |
+
}
|
1722 |
+
},
|
1723 |
+
{
|
1724 |
+
"attention": {
|
1725 |
+
"n_heads_in_group": 16,
|
1726 |
+
"no_op": false,
|
1727 |
+
"num_sink_tokens": null,
|
1728 |
+
"replace_with_linear": false,
|
1729 |
+
"sparsify": null,
|
1730 |
+
"unshifted_sink": false,
|
1731 |
+
"use_prefill_window_in_sink_attention": false,
|
1732 |
+
"window_length": null
|
1733 |
+
},
|
1734 |
+
"ffn": {
|
1735 |
+
"ffn_mult": 2.4375,
|
1736 |
+
"no_op": false,
|
1737 |
+
"replace_with_linear": false,
|
1738 |
+
"sparsify": null
|
1739 |
+
}
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"attention": {
|
1743 |
+
"n_heads_in_group": null,
|
1744 |
+
"no_op": true,
|
1745 |
+
"num_sink_tokens": null,
|
1746 |
+
"replace_with_linear": false,
|
1747 |
+
"sparsify": null,
|
1748 |
+
"unshifted_sink": false,
|
1749 |
+
"use_prefill_window_in_sink_attention": false,
|
1750 |
+
"window_length": null
|
1751 |
+
},
|
1752 |
+
"ffn": {
|
1753 |
+
"ffn_mult": 2.4375,
|
1754 |
+
"no_op": false,
|
1755 |
+
"replace_with_linear": false,
|
1756 |
+
"sparsify": null
|
1757 |
+
}
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"attention": {
|
1761 |
+
"n_heads_in_group": null,
|
1762 |
+
"no_op": true,
|
1763 |
+
"num_sink_tokens": null,
|
1764 |
+
"replace_with_linear": false,
|
1765 |
+
"sparsify": null,
|
1766 |
+
"unshifted_sink": false,
|
1767 |
+
"use_prefill_window_in_sink_attention": false,
|
1768 |
+
"window_length": null
|
1769 |
+
},
|
1770 |
+
"ffn": {
|
1771 |
+
"ffn_mult": 2.4375,
|
1772 |
+
"no_op": false,
|
1773 |
+
"replace_with_linear": false,
|
1774 |
+
"sparsify": null
|
1775 |
+
}
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"attention": {
|
1779 |
+
"n_heads_in_group": 16,
|
1780 |
+
"no_op": false,
|
1781 |
+
"num_sink_tokens": null,
|
1782 |
+
"replace_with_linear": false,
|
1783 |
+
"sparsify": null,
|
1784 |
+
"unshifted_sink": false,
|
1785 |
+
"use_prefill_window_in_sink_attention": false,
|
1786 |
+
"window_length": null
|
1787 |
+
},
|
1788 |
+
"ffn": {
|
1789 |
+
"ffn_mult": 2.4375,
|
1790 |
+
"no_op": false,
|
1791 |
+
"replace_with_linear": false,
|
1792 |
+
"sparsify": null
|
1793 |
+
}
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"attention": {
|
1797 |
+
"n_heads_in_group": null,
|
1798 |
+
"no_op": true,
|
1799 |
+
"num_sink_tokens": null,
|
1800 |
+
"replace_with_linear": false,
|
1801 |
+
"sparsify": null,
|
1802 |
+
"unshifted_sink": false,
|
1803 |
+
"use_prefill_window_in_sink_attention": false,
|
1804 |
+
"window_length": null
|
1805 |
+
},
|
1806 |
+
"ffn": {
|
1807 |
+
"ffn_mult": null,
|
1808 |
+
"no_op": true,
|
1809 |
+
"replace_with_linear": false,
|
1810 |
+
"sparsify": null
|
1811 |
+
}
|
1812 |
+
},
|
1813 |
+
{
|
1814 |
+
"attention": {
|
1815 |
+
"n_heads_in_group": null,
|
1816 |
+
"no_op": true,
|
1817 |
+
"num_sink_tokens": null,
|
1818 |
+
"replace_with_linear": false,
|
1819 |
+
"sparsify": null,
|
1820 |
+
"unshifted_sink": false,
|
1821 |
+
"use_prefill_window_in_sink_attention": false,
|
1822 |
+
"window_length": null
|
1823 |
+
},
|
1824 |
+
"ffn": {
|
1825 |
+
"ffn_mult": 2.4375,
|
1826 |
+
"no_op": false,
|
1827 |
+
"replace_with_linear": false,
|
1828 |
+
"sparsify": null
|
1829 |
+
}
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"attention": {
|
1833 |
+
"n_heads_in_group": null,
|
1834 |
+
"no_op": true,
|
1835 |
+
"num_sink_tokens": null,
|
1836 |
+
"replace_with_linear": false,
|
1837 |
+
"sparsify": null,
|
1838 |
+
"unshifted_sink": false,
|
1839 |
+
"use_prefill_window_in_sink_attention": false,
|
1840 |
+
"window_length": null
|
1841 |
+
},
|
1842 |
+
"ffn": {
|
1843 |
+
"ffn_mult": 2.4375,
|
1844 |
+
"no_op": false,
|
1845 |
+
"replace_with_linear": false,
|
1846 |
+
"sparsify": null
|
1847 |
+
}
|
1848 |
+
},
|
1849 |
+
{
|
1850 |
+
"attention": {
|
1851 |
+
"n_heads_in_group": null,
|
1852 |
+
"no_op": true,
|
1853 |
+
"num_sink_tokens": null,
|
1854 |
+
"replace_with_linear": false,
|
1855 |
+
"sparsify": null,
|
1856 |
+
"unshifted_sink": false,
|
1857 |
+
"use_prefill_window_in_sink_attention": false,
|
1858 |
+
"window_length": null
|
1859 |
+
},
|
1860 |
+
"ffn": {
|
1861 |
+
"ffn_mult": 2.4375,
|
1862 |
+
"no_op": false,
|
1863 |
+
"replace_with_linear": false,
|
1864 |
+
"sparsify": null
|
1865 |
+
}
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"attention": {
|
1869 |
+
"n_heads_in_group": null,
|
1870 |
+
"no_op": true,
|
1871 |
+
"num_sink_tokens": null,
|
1872 |
+
"replace_with_linear": false,
|
1873 |
+
"sparsify": null,
|
1874 |
+
"unshifted_sink": false,
|
1875 |
+
"use_prefill_window_in_sink_attention": false,
|
1876 |
+
"window_length": null
|
1877 |
+
},
|
1878 |
+
"ffn": {
|
1879 |
+
"ffn_mult": 2.4375,
|
1880 |
+
"no_op": false,
|
1881 |
+
"replace_with_linear": false,
|
1882 |
+
"sparsify": null
|
1883 |
+
}
|
1884 |
+
},
|
1885 |
+
{
|
1886 |
+
"attention": {
|
1887 |
+
"n_heads_in_group": null,
|
1888 |
+
"no_op": true,
|
1889 |
+
"num_sink_tokens": null,
|
1890 |
+
"replace_with_linear": false,
|
1891 |
+
"sparsify": null,
|
1892 |
+
"unshifted_sink": false,
|
1893 |
+
"use_prefill_window_in_sink_attention": false,
|
1894 |
+
"window_length": null
|
1895 |
+
},
|
1896 |
+
"ffn": {
|
1897 |
+
"ffn_mult": 2.4375,
|
1898 |
+
"no_op": false,
|
1899 |
+
"replace_with_linear": false,
|
1900 |
+
"sparsify": null
|
1901 |
+
}
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"attention": {
|
1905 |
+
"n_heads_in_group": null,
|
1906 |
+
"no_op": true,
|
1907 |
+
"num_sink_tokens": null,
|
1908 |
+
"replace_with_linear": false,
|
1909 |
+
"sparsify": null,
|
1910 |
+
"unshifted_sink": false,
|
1911 |
+
"use_prefill_window_in_sink_attention": false,
|
1912 |
+
"window_length": null
|
1913 |
+
},
|
1914 |
+
"ffn": {
|
1915 |
+
"ffn_mult": 2.4375,
|
1916 |
+
"no_op": false,
|
1917 |
+
"replace_with_linear": false,
|
1918 |
+
"sparsify": null
|
1919 |
+
}
|
1920 |
+
},
|
1921 |
+
{
|
1922 |
+
"attention": {
|
1923 |
+
"n_heads_in_group": null,
|
1924 |
+
"no_op": true,
|
1925 |
+
"num_sink_tokens": null,
|
1926 |
+
"replace_with_linear": false,
|
1927 |
+
"sparsify": null,
|
1928 |
+
"unshifted_sink": false,
|
1929 |
+
"use_prefill_window_in_sink_attention": false,
|
1930 |
+
"window_length": null
|
1931 |
+
},
|
1932 |
+
"ffn": {
|
1933 |
+
"ffn_mult": 2.4375,
|
1934 |
+
"no_op": false,
|
1935 |
+
"replace_with_linear": false,
|
1936 |
+
"sparsify": null
|
1937 |
+
}
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"attention": {
|
1941 |
+
"n_heads_in_group": 16,
|
1942 |
+
"no_op": false,
|
1943 |
+
"num_sink_tokens": null,
|
1944 |
+
"replace_with_linear": false,
|
1945 |
+
"sparsify": null,
|
1946 |
+
"unshifted_sink": false,
|
1947 |
+
"use_prefill_window_in_sink_attention": false,
|
1948 |
+
"window_length": null
|
1949 |
+
},
|
1950 |
+
"ffn": {
|
1951 |
+
"ffn_mult": 2.4375,
|
1952 |
+
"no_op": false,
|
1953 |
+
"replace_with_linear": false,
|
1954 |
+
"sparsify": null
|
1955 |
+
}
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"attention": {
|
1959 |
+
"n_heads_in_group": null,
|
1960 |
+
"no_op": true,
|
1961 |
+
"num_sink_tokens": null,
|
1962 |
+
"replace_with_linear": false,
|
1963 |
+
"sparsify": null,
|
1964 |
+
"unshifted_sink": false,
|
1965 |
+
"use_prefill_window_in_sink_attention": false,
|
1966 |
+
"window_length": null
|
1967 |
+
},
|
1968 |
+
"ffn": {
|
1969 |
+
"ffn_mult": null,
|
1970 |
+
"no_op": true,
|
1971 |
+
"replace_with_linear": false,
|
1972 |
+
"sparsify": null
|
1973 |
+
}
|
1974 |
+
},
|
1975 |
+
{
|
1976 |
+
"attention": {
|
1977 |
+
"n_heads_in_group": null,
|
1978 |
+
"no_op": true,
|
1979 |
+
"num_sink_tokens": null,
|
1980 |
+
"replace_with_linear": false,
|
1981 |
+
"sparsify": null,
|
1982 |
+
"unshifted_sink": false,
|
1983 |
+
"use_prefill_window_in_sink_attention": false,
|
1984 |
+
"window_length": null
|
1985 |
+
},
|
1986 |
+
"ffn": {
|
1987 |
+
"ffn_mult": null,
|
1988 |
+
"no_op": true,
|
1989 |
+
"replace_with_linear": false,
|
1990 |
+
"sparsify": null
|
1991 |
+
}
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"attention": {
|
1995 |
+
"n_heads_in_group": null,
|
1996 |
+
"no_op": true,
|
1997 |
+
"num_sink_tokens": null,
|
1998 |
+
"replace_with_linear": false,
|
1999 |
+
"sparsify": null,
|
2000 |
+
"unshifted_sink": false,
|
2001 |
+
"use_prefill_window_in_sink_attention": false,
|
2002 |
+
"window_length": null
|
2003 |
+
},
|
2004 |
+
"ffn": {
|
2005 |
+
"ffn_mult": null,
|
2006 |
+
"no_op": true,
|
2007 |
+
"replace_with_linear": false,
|
2008 |
+
"sparsify": null
|
2009 |
+
}
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"attention": {
|
2013 |
+
"n_heads_in_group": null,
|
2014 |
+
"no_op": true,
|
2015 |
+
"num_sink_tokens": null,
|
2016 |
+
"replace_with_linear": false,
|
2017 |
+
"sparsify": null,
|
2018 |
+
"unshifted_sink": false,
|
2019 |
+
"use_prefill_window_in_sink_attention": false,
|
2020 |
+
"window_length": null
|
2021 |
+
},
|
2022 |
+
"ffn": {
|
2023 |
+
"ffn_mult": null,
|
2024 |
+
"no_op": true,
|
2025 |
+
"replace_with_linear": false,
|
2026 |
+
"sparsify": null
|
2027 |
+
}
|
2028 |
+
},
|
2029 |
+
{
|
2030 |
+
"attention": {
|
2031 |
+
"n_heads_in_group": null,
|
2032 |
+
"no_op": true,
|
2033 |
+
"num_sink_tokens": null,
|
2034 |
+
"replace_with_linear": false,
|
2035 |
+
"sparsify": null,
|
2036 |
+
"unshifted_sink": false,
|
2037 |
+
"use_prefill_window_in_sink_attention": false,
|
2038 |
+
"window_length": null
|
2039 |
+
},
|
2040 |
+
"ffn": {
|
2041 |
+
"ffn_mult": null,
|
2042 |
+
"no_op": true,
|
2043 |
+
"replace_with_linear": false,
|
2044 |
+
"sparsify": null
|
2045 |
+
}
|
2046 |
+
},
|
2047 |
+
{
|
2048 |
+
"attention": {
|
2049 |
+
"n_heads_in_group": 16,
|
2050 |
+
"no_op": false,
|
2051 |
+
"num_sink_tokens": null,
|
2052 |
+
"replace_with_linear": false,
|
2053 |
+
"sparsify": null,
|
2054 |
+
"unshifted_sink": false,
|
2055 |
+
"use_prefill_window_in_sink_attention": false,
|
2056 |
+
"window_length": null
|
2057 |
+
},
|
2058 |
+
"ffn": {
|
2059 |
+
"ffn_mult": 2.925,
|
2060 |
+
"no_op": false,
|
2061 |
+
"replace_with_linear": false,
|
2062 |
+
"sparsify": null
|
2063 |
+
}
|
2064 |
+
},
|
2065 |
+
{
|
2066 |
+
"attention": {
|
2067 |
+
"n_heads_in_group": 16,
|
2068 |
+
"no_op": false,
|
2069 |
+
"num_sink_tokens": null,
|
2070 |
+
"replace_with_linear": false,
|
2071 |
+
"sparsify": null,
|
2072 |
+
"unshifted_sink": false,
|
2073 |
+
"use_prefill_window_in_sink_attention": false,
|
2074 |
+
"window_length": null
|
2075 |
+
},
|
2076 |
+
"ffn": {
|
2077 |
+
"ffn_mult": 4.875,
|
2078 |
+
"no_op": false,
|
2079 |
+
"replace_with_linear": false,
|
2080 |
+
"sparsify": null
|
2081 |
+
}
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"attention": {
|
2085 |
+
"n_heads_in_group": null,
|
2086 |
+
"no_op": true,
|
2087 |
+
"num_sink_tokens": null,
|
2088 |
+
"replace_with_linear": false,
|
2089 |
+
"sparsify": null,
|
2090 |
+
"unshifted_sink": false,
|
2091 |
+
"use_prefill_window_in_sink_attention": false,
|
2092 |
+
"window_length": null
|
2093 |
+
},
|
2094 |
+
"ffn": {
|
2095 |
+
"ffn_mult": 4.875,
|
2096 |
+
"no_op": false,
|
2097 |
+
"replace_with_linear": false,
|
2098 |
+
"sparsify": null
|
2099 |
+
}
|
2100 |
+
},
|
2101 |
+
{
|
2102 |
+
"attention": {
|
2103 |
+
"n_heads_in_group": 16,
|
2104 |
+
"no_op": false,
|
2105 |
+
"num_sink_tokens": null,
|
2106 |
+
"replace_with_linear": false,
|
2107 |
+
"sparsify": null,
|
2108 |
+
"unshifted_sink": false,
|
2109 |
+
"use_prefill_window_in_sink_attention": false,
|
2110 |
+
"window_length": null
|
2111 |
+
},
|
2112 |
+
"ffn": {
|
2113 |
+
"ffn_mult": 4.875,
|
2114 |
+
"no_op": false,
|
2115 |
+
"replace_with_linear": false,
|
2116 |
+
"sparsify": null
|
2117 |
+
}
|
2118 |
+
},
|
2119 |
+
{
|
2120 |
+
"attention": {
|
2121 |
+
"n_heads_in_group": null,
|
2122 |
+
"no_op": true,
|
2123 |
+
"num_sink_tokens": null,
|
2124 |
+
"replace_with_linear": false,
|
2125 |
+
"sparsify": null,
|
2126 |
+
"unshifted_sink": false,
|
2127 |
+
"use_prefill_window_in_sink_attention": false,
|
2128 |
+
"window_length": null
|
2129 |
+
},
|
2130 |
+
"ffn": {
|
2131 |
+
"ffn_mult": null,
|
2132 |
+
"no_op": true,
|
2133 |
+
"replace_with_linear": false,
|
2134 |
+
"sparsify": null
|
2135 |
+
}
|
2136 |
+
},
|
2137 |
+
{
|
2138 |
+
"attention": {
|
2139 |
+
"n_heads_in_group": null,
|
2140 |
+
"no_op": true,
|
2141 |
+
"num_sink_tokens": null,
|
2142 |
+
"replace_with_linear": false,
|
2143 |
+
"sparsify": null,
|
2144 |
+
"unshifted_sink": false,
|
2145 |
+
"use_prefill_window_in_sink_attention": false,
|
2146 |
+
"window_length": null
|
2147 |
+
},
|
2148 |
+
"ffn": {
|
2149 |
+
"ffn_mult": null,
|
2150 |
+
"no_op": true,
|
2151 |
+
"replace_with_linear": false,
|
2152 |
+
"sparsify": null
|
2153 |
+
}
|
2154 |
+
},
|
2155 |
+
{
|
2156 |
+
"attention": {
|
2157 |
+
"n_heads_in_group": null,
|
2158 |
+
"no_op": true,
|
2159 |
+
"num_sink_tokens": null,
|
2160 |
+
"replace_with_linear": false,
|
2161 |
+
"sparsify": null,
|
2162 |
+
"unshifted_sink": false,
|
2163 |
+
"use_prefill_window_in_sink_attention": false,
|
2164 |
+
"window_length": null
|
2165 |
+
},
|
2166 |
+
"ffn": {
|
2167 |
+
"ffn_mult": null,
|
2168 |
+
"no_op": true,
|
2169 |
+
"replace_with_linear": false,
|
2170 |
+
"sparsify": null
|
2171 |
+
}
|
2172 |
+
},
|
2173 |
+
{
|
2174 |
+
"attention": {
|
2175 |
+
"n_heads_in_group": null,
|
2176 |
+
"no_op": true,
|
2177 |
+
"num_sink_tokens": null,
|
2178 |
+
"replace_with_linear": false,
|
2179 |
+
"sparsify": null,
|
2180 |
+
"unshifted_sink": false,
|
2181 |
+
"use_prefill_window_in_sink_attention": false,
|
2182 |
+
"window_length": null
|
2183 |
+
},
|
2184 |
+
"ffn": {
|
2185 |
+
"ffn_mult": null,
|
2186 |
+
"no_op": true,
|
2187 |
+
"replace_with_linear": false,
|
2188 |
+
"sparsify": null
|
2189 |
+
}
|
2190 |
+
},
|
2191 |
+
{
|
2192 |
+
"attention": {
|
2193 |
+
"n_heads_in_group": null,
|
2194 |
+
"no_op": true,
|
2195 |
+
"num_sink_tokens": null,
|
2196 |
+
"replace_with_linear": false,
|
2197 |
+
"sparsify": null,
|
2198 |
+
"unshifted_sink": false,
|
2199 |
+
"use_prefill_window_in_sink_attention": false,
|
2200 |
+
"window_length": null
|
2201 |
+
},
|
2202 |
+
"ffn": {
|
2203 |
+
"ffn_mult": null,
|
2204 |
+
"no_op": true,
|
2205 |
+
"replace_with_linear": false,
|
2206 |
+
"sparsify": null
|
2207 |
+
}
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"attention": {
|
2211 |
+
"n_heads_in_group": null,
|
2212 |
+
"no_op": true,
|
2213 |
+
"num_sink_tokens": null,
|
2214 |
+
"replace_with_linear": false,
|
2215 |
+
"sparsify": null,
|
2216 |
+
"unshifted_sink": false,
|
2217 |
+
"use_prefill_window_in_sink_attention": false,
|
2218 |
+
"window_length": null
|
2219 |
+
},
|
2220 |
+
"ffn": {
|
2221 |
+
"ffn_mult": null,
|
2222 |
+
"no_op": true,
|
2223 |
+
"replace_with_linear": false,
|
2224 |
+
"sparsify": null
|
2225 |
+
}
|
2226 |
+
},
|
2227 |
+
{
|
2228 |
+
"attention": {
|
2229 |
+
"n_heads_in_group": null,
|
2230 |
+
"no_op": true,
|
2231 |
+
"num_sink_tokens": null,
|
2232 |
+
"replace_with_linear": false,
|
2233 |
+
"sparsify": null,
|
2234 |
+
"unshifted_sink": false,
|
2235 |
+
"use_prefill_window_in_sink_attention": false,
|
2236 |
+
"window_length": null
|
2237 |
+
},
|
2238 |
+
"ffn": {
|
2239 |
+
"ffn_mult": null,
|
2240 |
+
"no_op": true,
|
2241 |
+
"replace_with_linear": false,
|
2242 |
+
"sparsify": null
|
2243 |
+
}
|
2244 |
+
},
|
2245 |
+
{
|
2246 |
+
"attention": {
|
2247 |
+
"n_heads_in_group": null,
|
2248 |
+
"no_op": true,
|
2249 |
+
"num_sink_tokens": null,
|
2250 |
+
"replace_with_linear": false,
|
2251 |
+
"sparsify": null,
|
2252 |
+
"unshifted_sink": false,
|
2253 |
+
"use_prefill_window_in_sink_attention": false,
|
2254 |
+
"window_length": null
|
2255 |
+
},
|
2256 |
+
"ffn": {
|
2257 |
+
"ffn_mult": null,
|
2258 |
+
"no_op": true,
|
2259 |
+
"replace_with_linear": false,
|
2260 |
+
"sparsify": null
|
2261 |
+
}
|
2262 |
+
},
|
2263 |
+
{
|
2264 |
+
"attention": {
|
2265 |
+
"n_heads_in_group": null,
|
2266 |
+
"no_op": true,
|
2267 |
+
"num_sink_tokens": null,
|
2268 |
+
"replace_with_linear": false,
|
2269 |
+
"sparsify": null,
|
2270 |
+
"unshifted_sink": false,
|
2271 |
+
"use_prefill_window_in_sink_attention": false,
|
2272 |
+
"window_length": null
|
2273 |
+
},
|
2274 |
+
"ffn": {
|
2275 |
+
"ffn_mult": 36.5625,
|
2276 |
+
"no_op": false,
|
2277 |
+
"replace_with_linear": false,
|
2278 |
+
"sparsify": null
|
2279 |
+
}
|
2280 |
+
},
|
2281 |
+
{
|
2282 |
+
"attention": {
|
2283 |
+
"n_heads_in_group": null,
|
2284 |
+
"no_op": true,
|
2285 |
+
"num_sink_tokens": null,
|
2286 |
+
"replace_with_linear": false,
|
2287 |
+
"sparsify": null,
|
2288 |
+
"unshifted_sink": false,
|
2289 |
+
"use_prefill_window_in_sink_attention": false,
|
2290 |
+
"window_length": null
|
2291 |
+
},
|
2292 |
+
"ffn": {
|
2293 |
+
"ffn_mult": null,
|
2294 |
+
"no_op": true,
|
2295 |
+
"replace_with_linear": false,
|
2296 |
+
"sparsify": null
|
2297 |
+
}
|
2298 |
+
},
|
2299 |
+
{
|
2300 |
+
"attention": {
|
2301 |
+
"n_heads_in_group": null,
|
2302 |
+
"no_op": true,
|
2303 |
+
"num_sink_tokens": null,
|
2304 |
+
"replace_with_linear": false,
|
2305 |
+
"sparsify": null,
|
2306 |
+
"unshifted_sink": false,
|
2307 |
+
"use_prefill_window_in_sink_attention": false,
|
2308 |
+
"window_length": null
|
2309 |
+
},
|
2310 |
+
"ffn": {
|
2311 |
+
"ffn_mult": null,
|
2312 |
+
"no_op": true,
|
2313 |
+
"replace_with_linear": false,
|
2314 |
+
"sparsify": null
|
2315 |
+
}
|
2316 |
+
},
|
2317 |
+
{
|
2318 |
+
"attention": {
|
2319 |
+
"n_heads_in_group": null,
|
2320 |
+
"no_op": true,
|
2321 |
+
"num_sink_tokens": null,
|
2322 |
+
"replace_with_linear": false,
|
2323 |
+
"sparsify": null,
|
2324 |
+
"unshifted_sink": false,
|
2325 |
+
"use_prefill_window_in_sink_attention": false,
|
2326 |
+
"window_length": null
|
2327 |
+
},
|
2328 |
+
"ffn": {
|
2329 |
+
"ffn_mult": null,
|
2330 |
+
"no_op": true,
|
2331 |
+
"replace_with_linear": false,
|
2332 |
+
"sparsify": null
|
2333 |
+
}
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"attention": {
|
2337 |
+
"n_heads_in_group": null,
|
2338 |
+
"no_op": true,
|
2339 |
+
"num_sink_tokens": null,
|
2340 |
+
"replace_with_linear": false,
|
2341 |
+
"sparsify": null,
|
2342 |
+
"unshifted_sink": false,
|
2343 |
+
"use_prefill_window_in_sink_attention": false,
|
2344 |
+
"window_length": null
|
2345 |
+
},
|
2346 |
+
"ffn": {
|
2347 |
+
"ffn_mult": null,
|
2348 |
+
"no_op": true,
|
2349 |
+
"replace_with_linear": false,
|
2350 |
+
"sparsify": null
|
2351 |
+
}
|
2352 |
+
},
|
2353 |
+
{
|
2354 |
+
"attention": {
|
2355 |
+
"n_heads_in_group": null,
|
2356 |
+
"no_op": true,
|
2357 |
+
"num_sink_tokens": null,
|
2358 |
+
"replace_with_linear": false,
|
2359 |
+
"sparsify": null,
|
2360 |
+
"unshifted_sink": false,
|
2361 |
+
"use_prefill_window_in_sink_attention": false,
|
2362 |
+
"window_length": null
|
2363 |
+
},
|
2364 |
+
"ffn": {
|
2365 |
+
"ffn_mult": null,
|
2366 |
+
"no_op": true,
|
2367 |
+
"replace_with_linear": false,
|
2368 |
+
"sparsify": null
|
2369 |
+
}
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"attention": {
|
2373 |
+
"n_heads_in_group": null,
|
2374 |
+
"no_op": true,
|
2375 |
+
"num_sink_tokens": null,
|
2376 |
+
"replace_with_linear": false,
|
2377 |
+
"sparsify": null,
|
2378 |
+
"unshifted_sink": false,
|
2379 |
+
"use_prefill_window_in_sink_attention": false,
|
2380 |
+
"window_length": null
|
2381 |
+
},
|
2382 |
+
"ffn": {
|
2383 |
+
"ffn_mult": null,
|
2384 |
+
"no_op": true,
|
2385 |
+
"replace_with_linear": false,
|
2386 |
+
"sparsify": null
|
2387 |
+
}
|
2388 |
+
},
|
2389 |
+
{
|
2390 |
+
"attention": {
|
2391 |
+
"n_heads_in_group": null,
|
2392 |
+
"no_op": true,
|
2393 |
+
"num_sink_tokens": null,
|
2394 |
+
"replace_with_linear": false,
|
2395 |
+
"sparsify": null,
|
2396 |
+
"unshifted_sink": false,
|
2397 |
+
"use_prefill_window_in_sink_attention": false,
|
2398 |
+
"window_length": null
|
2399 |
+
},
|
2400 |
+
"ffn": {
|
2401 |
+
"ffn_mult": null,
|
2402 |
+
"no_op": true,
|
2403 |
+
"replace_with_linear": false,
|
2404 |
+
"sparsify": null
|
2405 |
+
}
|
2406 |
+
},
|
2407 |
+
{
|
2408 |
+
"attention": {
|
2409 |
+
"n_heads_in_group": null,
|
2410 |
+
"no_op": true,
|
2411 |
+
"num_sink_tokens": null,
|
2412 |
+
"replace_with_linear": false,
|
2413 |
+
"sparsify": null,
|
2414 |
+
"unshifted_sink": false,
|
2415 |
+
"use_prefill_window_in_sink_attention": false,
|
2416 |
+
"window_length": null
|
2417 |
+
},
|
2418 |
+
"ffn": {
|
2419 |
+
"ffn_mult": null,
|
2420 |
+
"no_op": true,
|
2421 |
+
"replace_with_linear": false,
|
2422 |
+
"sparsify": null
|
2423 |
+
}
|
2424 |
+
},
|
2425 |
+
{
|
2426 |
+
"attention": {
|
2427 |
+
"n_heads_in_group": null,
|
2428 |
+
"no_op": true,
|
2429 |
+
"num_sink_tokens": null,
|
2430 |
+
"replace_with_linear": false,
|
2431 |
+
"sparsify": null,
|
2432 |
+
"unshifted_sink": false,
|
2433 |
+
"use_prefill_window_in_sink_attention": false,
|
2434 |
+
"window_length": null
|
2435 |
+
},
|
2436 |
+
"ffn": {
|
2437 |
+
"ffn_mult": 39.0,
|
2438 |
+
"no_op": false,
|
2439 |
+
"replace_with_linear": false,
|
2440 |
+
"sparsify": null
|
2441 |
+
}
|
2442 |
+
},
|
2443 |
+
{
|
2444 |
+
"attention": {
|
2445 |
+
"n_heads_in_group": null,
|
2446 |
+
"no_op": true,
|
2447 |
+
"num_sink_tokens": null,
|
2448 |
+
"replace_with_linear": false,
|
2449 |
+
"sparsify": null,
|
2450 |
+
"unshifted_sink": false,
|
2451 |
+
"use_prefill_window_in_sink_attention": false,
|
2452 |
+
"window_length": null
|
2453 |
+
},
|
2454 |
+
"ffn": {
|
2455 |
+
"ffn_mult": null,
|
2456 |
+
"no_op": true,
|
2457 |
+
"replace_with_linear": false,
|
2458 |
+
"sparsify": null
|
2459 |
+
}
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"attention": {
|
2463 |
+
"n_heads_in_group": null,
|
2464 |
+
"no_op": true,
|
2465 |
+
"num_sink_tokens": null,
|
2466 |
+
"replace_with_linear": false,
|
2467 |
+
"sparsify": null,
|
2468 |
+
"unshifted_sink": false,
|
2469 |
+
"use_prefill_window_in_sink_attention": false,
|
2470 |
+
"window_length": null
|
2471 |
+
},
|
2472 |
+
"ffn": {
|
2473 |
+
"ffn_mult": null,
|
2474 |
+
"no_op": true,
|
2475 |
+
"replace_with_linear": false,
|
2476 |
+
"sparsify": null
|
2477 |
+
}
|
2478 |
+
},
|
2479 |
+
{
|
2480 |
+
"attention": {
|
2481 |
+
"n_heads_in_group": null,
|
2482 |
+
"no_op": true,
|
2483 |
+
"num_sink_tokens": null,
|
2484 |
+
"replace_with_linear": false,
|
2485 |
+
"sparsify": null,
|
2486 |
+
"unshifted_sink": false,
|
2487 |
+
"use_prefill_window_in_sink_attention": false,
|
2488 |
+
"window_length": null
|
2489 |
+
},
|
2490 |
+
"ffn": {
|
2491 |
+
"ffn_mult": null,
|
2492 |
+
"no_op": true,
|
2493 |
+
"replace_with_linear": false,
|
2494 |
+
"sparsify": null
|
2495 |
+
}
|
2496 |
+
},
|
2497 |
+
{
|
2498 |
+
"attention": {
|
2499 |
+
"n_heads_in_group": null,
|
2500 |
+
"no_op": true,
|
2501 |
+
"num_sink_tokens": null,
|
2502 |
+
"replace_with_linear": false,
|
2503 |
+
"sparsify": null,
|
2504 |
+
"unshifted_sink": false,
|
2505 |
+
"use_prefill_window_in_sink_attention": false,
|
2506 |
+
"window_length": null
|
2507 |
+
},
|
2508 |
+
"ffn": {
|
2509 |
+
"ffn_mult": null,
|
2510 |
+
"no_op": true,
|
2511 |
+
"replace_with_linear": false,
|
2512 |
+
"sparsify": null
|
2513 |
+
}
|
2514 |
+
},
|
2515 |
+
{
|
2516 |
+
"attention": {
|
2517 |
+
"n_heads_in_group": null,
|
2518 |
+
"no_op": true,
|
2519 |
+
"num_sink_tokens": null,
|
2520 |
+
"replace_with_linear": false,
|
2521 |
+
"sparsify": null,
|
2522 |
+
"unshifted_sink": false,
|
2523 |
+
"use_prefill_window_in_sink_attention": false,
|
2524 |
+
"window_length": null
|
2525 |
+
},
|
2526 |
+
"ffn": {
|
2527 |
+
"ffn_mult": null,
|
2528 |
+
"no_op": true,
|
2529 |
+
"replace_with_linear": false,
|
2530 |
+
"sparsify": null
|
2531 |
+
}
|
2532 |
+
},
|
2533 |
+
{
|
2534 |
+
"attention": {
|
2535 |
+
"n_heads_in_group": null,
|
2536 |
+
"no_op": true,
|
2537 |
+
"num_sink_tokens": null,
|
2538 |
+
"replace_with_linear": false,
|
2539 |
+
"sparsify": null,
|
2540 |
+
"unshifted_sink": false,
|
2541 |
+
"use_prefill_window_in_sink_attention": false,
|
2542 |
+
"window_length": null
|
2543 |
+
},
|
2544 |
+
"ffn": {
|
2545 |
+
"ffn_mult": null,
|
2546 |
+
"no_op": true,
|
2547 |
+
"replace_with_linear": false,
|
2548 |
+
"sparsify": null
|
2549 |
+
}
|
2550 |
+
},
|
2551 |
+
{
|
2552 |
+
"attention": {
|
2553 |
+
"n_heads_in_group": null,
|
2554 |
+
"no_op": true,
|
2555 |
+
"num_sink_tokens": null,
|
2556 |
+
"replace_with_linear": false,
|
2557 |
+
"sparsify": null,
|
2558 |
+
"unshifted_sink": false,
|
2559 |
+
"use_prefill_window_in_sink_attention": false,
|
2560 |
+
"window_length": null
|
2561 |
+
},
|
2562 |
+
"ffn": {
|
2563 |
+
"ffn_mult": null,
|
2564 |
+
"no_op": true,
|
2565 |
+
"replace_with_linear": false,
|
2566 |
+
"sparsify": null
|
2567 |
+
}
|
2568 |
+
},
|
2569 |
+
{
|
2570 |
+
"attention": {
|
2571 |
+
"n_heads_in_group": null,
|
2572 |
+
"no_op": true,
|
2573 |
+
"num_sink_tokens": null,
|
2574 |
+
"replace_with_linear": false,
|
2575 |
+
"sparsify": null,
|
2576 |
+
"unshifted_sink": false,
|
2577 |
+
"use_prefill_window_in_sink_attention": false,
|
2578 |
+
"window_length": null
|
2579 |
+
},
|
2580 |
+
"ffn": {
|
2581 |
+
"ffn_mult": null,
|
2582 |
+
"no_op": true,
|
2583 |
+
"replace_with_linear": false,
|
2584 |
+
"sparsify": null
|
2585 |
+
}
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"attention": {
|
2589 |
+
"n_heads_in_group": null,
|
2590 |
+
"no_op": true,
|
2591 |
+
"num_sink_tokens": null,
|
2592 |
+
"replace_with_linear": false,
|
2593 |
+
"sparsify": null,
|
2594 |
+
"unshifted_sink": false,
|
2595 |
+
"use_prefill_window_in_sink_attention": false,
|
2596 |
+
"window_length": null
|
2597 |
+
},
|
2598 |
+
"ffn": {
|
2599 |
+
"ffn_mult": 31.40625,
|
2600 |
+
"no_op": false,
|
2601 |
+
"replace_with_linear": false,
|
2602 |
+
"sparsify": null
|
2603 |
+
}
|
2604 |
+
},
|
2605 |
+
{
|
2606 |
+
"attention": {
|
2607 |
+
"n_heads_in_group": null,
|
2608 |
+
"no_op": true,
|
2609 |
+
"num_sink_tokens": null,
|
2610 |
+
"replace_with_linear": false,
|
2611 |
+
"sparsify": null,
|
2612 |
+
"unshifted_sink": false,
|
2613 |
+
"use_prefill_window_in_sink_attention": false,
|
2614 |
+
"window_length": null
|
2615 |
+
},
|
2616 |
+
"ffn": {
|
2617 |
+
"ffn_mult": null,
|
2618 |
+
"no_op": true,
|
2619 |
+
"replace_with_linear": false,
|
2620 |
+
"sparsify": null
|
2621 |
+
}
|
2622 |
+
},
|
2623 |
+
{
|
2624 |
+
"attention": {
|
2625 |
+
"n_heads_in_group": null,
|
2626 |
+
"no_op": true,
|
2627 |
+
"num_sink_tokens": null,
|
2628 |
+
"replace_with_linear": false,
|
2629 |
+
"sparsify": null,
|
2630 |
+
"unshifted_sink": false,
|
2631 |
+
"use_prefill_window_in_sink_attention": false,
|
2632 |
+
"window_length": null
|
2633 |
+
},
|
2634 |
+
"ffn": {
|
2635 |
+
"ffn_mult": null,
|
2636 |
+
"no_op": true,
|
2637 |
+
"replace_with_linear": false,
|
2638 |
+
"sparsify": null
|
2639 |
+
}
|
2640 |
+
},
|
2641 |
+
{
|
2642 |
+
"attention": {
|
2643 |
+
"n_heads_in_group": null,
|
2644 |
+
"no_op": true,
|
2645 |
+
"num_sink_tokens": null,
|
2646 |
+
"replace_with_linear": false,
|
2647 |
+
"sparsify": null,
|
2648 |
+
"unshifted_sink": false,
|
2649 |
+
"use_prefill_window_in_sink_attention": false,
|
2650 |
+
"window_length": null
|
2651 |
+
},
|
2652 |
+
"ffn": {
|
2653 |
+
"ffn_mult": null,
|
2654 |
+
"no_op": true,
|
2655 |
+
"replace_with_linear": false,
|
2656 |
+
"sparsify": null
|
2657 |
+
}
|
2658 |
+
},
|
2659 |
+
{
|
2660 |
+
"attention": {
|
2661 |
+
"n_heads_in_group": null,
|
2662 |
+
"no_op": true,
|
2663 |
+
"num_sink_tokens": null,
|
2664 |
+
"replace_with_linear": false,
|
2665 |
+
"sparsify": null,
|
2666 |
+
"unshifted_sink": false,
|
2667 |
+
"use_prefill_window_in_sink_attention": false,
|
2668 |
+
"window_length": null
|
2669 |
+
},
|
2670 |
+
"ffn": {
|
2671 |
+
"ffn_mult": null,
|
2672 |
+
"no_op": true,
|
2673 |
+
"replace_with_linear": false,
|
2674 |
+
"sparsify": null
|
2675 |
+
}
|
2676 |
+
},
|
2677 |
+
{
|
2678 |
+
"attention": {
|
2679 |
+
"n_heads_in_group": null,
|
2680 |
+
"no_op": true,
|
2681 |
+
"num_sink_tokens": null,
|
2682 |
+
"replace_with_linear": false,
|
2683 |
+
"sparsify": null,
|
2684 |
+
"unshifted_sink": false,
|
2685 |
+
"use_prefill_window_in_sink_attention": false,
|
2686 |
+
"window_length": null
|
2687 |
+
},
|
2688 |
+
"ffn": {
|
2689 |
+
"ffn_mult": null,
|
2690 |
+
"no_op": true,
|
2691 |
+
"replace_with_linear": false,
|
2692 |
+
"sparsify": null
|
2693 |
+
}
|
2694 |
+
},
|
2695 |
+
{
|
2696 |
+
"attention": {
|
2697 |
+
"n_heads_in_group": null,
|
2698 |
+
"no_op": true,
|
2699 |
+
"num_sink_tokens": null,
|
2700 |
+
"replace_with_linear": false,
|
2701 |
+
"sparsify": null,
|
2702 |
+
"unshifted_sink": false,
|
2703 |
+
"use_prefill_window_in_sink_attention": false,
|
2704 |
+
"window_length": null
|
2705 |
+
},
|
2706 |
+
"ffn": {
|
2707 |
+
"ffn_mult": 27.5625,
|
2708 |
+
"no_op": false,
|
2709 |
+
"replace_with_linear": false,
|
2710 |
+
"sparsify": null
|
2711 |
+
}
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"attention": {
|
2715 |
+
"n_heads_in_group": null,
|
2716 |
+
"no_op": true,
|
2717 |
+
"num_sink_tokens": null,
|
2718 |
+
"replace_with_linear": false,
|
2719 |
+
"sparsify": null,
|
2720 |
+
"unshifted_sink": false,
|
2721 |
+
"use_prefill_window_in_sink_attention": false,
|
2722 |
+
"window_length": null
|
2723 |
+
},
|
2724 |
+
"ffn": {
|
2725 |
+
"ffn_mult": 1.95,
|
2726 |
+
"no_op": false,
|
2727 |
+
"replace_with_linear": false,
|
2728 |
+
"sparsify": null
|
2729 |
+
}
|
2730 |
+
},
|
2731 |
+
{
|
2732 |
+
"attention": {
|
2733 |
+
"n_heads_in_group": 16,
|
2734 |
+
"no_op": false,
|
2735 |
+
"num_sink_tokens": null,
|
2736 |
+
"replace_with_linear": false,
|
2737 |
+
"sparsify": null,
|
2738 |
+
"unshifted_sink": false,
|
2739 |
+
"use_prefill_window_in_sink_attention": false,
|
2740 |
+
"window_length": null
|
2741 |
+
},
|
2742 |
+
"ffn": {
|
2743 |
+
"ffn_mult": 1.95,
|
2744 |
+
"no_op": false,
|
2745 |
+
"replace_with_linear": false,
|
2746 |
+
"sparsify": null
|
2747 |
+
}
|
2748 |
+
},
|
2749 |
+
{
|
2750 |
+
"attention": {
|
2751 |
+
"n_heads_in_group": 16,
|
2752 |
+
"no_op": false,
|
2753 |
+
"num_sink_tokens": null,
|
2754 |
+
"replace_with_linear": false,
|
2755 |
+
"sparsify": null,
|
2756 |
+
"unshifted_sink": false,
|
2757 |
+
"use_prefill_window_in_sink_attention": false,
|
2758 |
+
"window_length": null
|
2759 |
+
},
|
2760 |
+
"ffn": {
|
2761 |
+
"ffn_mult": 2.4375,
|
2762 |
+
"no_op": false,
|
2763 |
+
"replace_with_linear": false,
|
2764 |
+
"sparsify": null
|
2765 |
+
}
|
2766 |
+
},
|
2767 |
+
{
|
2768 |
+
"attention": {
|
2769 |
+
"n_heads_in_group": null,
|
2770 |
+
"no_op": true,
|
2771 |
+
"num_sink_tokens": null,
|
2772 |
+
"replace_with_linear": false,
|
2773 |
+
"sparsify": null,
|
2774 |
+
"unshifted_sink": false,
|
2775 |
+
"use_prefill_window_in_sink_attention": false,
|
2776 |
+
"window_length": null
|
2777 |
+
},
|
2778 |
+
"ffn": {
|
2779 |
+
"ffn_mult": null,
|
2780 |
+
"no_op": true,
|
2781 |
+
"replace_with_linear": false,
|
2782 |
+
"sparsify": null
|
2783 |
+
}
|
2784 |
+
},
|
2785 |
+
{
|
2786 |
+
"attention": {
|
2787 |
+
"n_heads_in_group": 16,
|
2788 |
+
"no_op": false,
|
2789 |
+
"num_sink_tokens": null,
|
2790 |
+
"replace_with_linear": false,
|
2791 |
+
"sparsify": null,
|
2792 |
+
"unshifted_sink": false,
|
2793 |
+
"use_prefill_window_in_sink_attention": false,
|
2794 |
+
"window_length": null
|
2795 |
+
},
|
2796 |
+
"ffn": {
|
2797 |
+
"ffn_mult": 2.4375,
|
2798 |
+
"no_op": false,
|
2799 |
+
"replace_with_linear": false,
|
2800 |
+
"sparsify": null
|
2801 |
+
}
|
2802 |
+
},
|
2803 |
+
{
|
2804 |
+
"attention": {
|
2805 |
+
"n_heads_in_group": 16,
|
2806 |
+
"no_op": false,
|
2807 |
+
"num_sink_tokens": null,
|
2808 |
+
"replace_with_linear": false,
|
2809 |
+
"sparsify": null,
|
2810 |
+
"unshifted_sink": false,
|
2811 |
+
"use_prefill_window_in_sink_attention": false,
|
2812 |
+
"window_length": null
|
2813 |
+
},
|
2814 |
+
"ffn": {
|
2815 |
+
"ffn_mult": 2.4375,
|
2816 |
+
"no_op": false,
|
2817 |
+
"replace_with_linear": false,
|
2818 |
+
"sparsify": null
|
2819 |
+
}
|
2820 |
+
},
|
2821 |
+
{
|
2822 |
+
"attention": {
|
2823 |
+
"n_heads_in_group": 16,
|
2824 |
+
"no_op": false,
|
2825 |
+
"num_sink_tokens": null,
|
2826 |
+
"replace_with_linear": false,
|
2827 |
+
"sparsify": null,
|
2828 |
+
"unshifted_sink": false,
|
2829 |
+
"use_prefill_window_in_sink_attention": false,
|
2830 |
+
"window_length": null
|
2831 |
+
},
|
2832 |
+
"ffn": {
|
2833 |
+
"ffn_mult": 3.4125,
|
2834 |
+
"no_op": false,
|
2835 |
+
"replace_with_linear": false,
|
2836 |
+
"sparsify": null
|
2837 |
+
}
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"attention": {
|
2841 |
+
"n_heads_in_group": 16,
|
2842 |
+
"no_op": false,
|
2843 |
+
"num_sink_tokens": null,
|
2844 |
+
"replace_with_linear": false,
|
2845 |
+
"sparsify": null,
|
2846 |
+
"unshifted_sink": false,
|
2847 |
+
"use_prefill_window_in_sink_attention": false,
|
2848 |
+
"window_length": null
|
2849 |
+
},
|
2850 |
+
"ffn": {
|
2851 |
+
"ffn_mult": 4.875,
|
2852 |
+
"no_op": false,
|
2853 |
+
"replace_with_linear": false,
|
2854 |
+
"sparsify": null
|
2855 |
+
}
|
2856 |
+
},
|
2857 |
+
{
|
2858 |
+
"attention": {
|
2859 |
+
"n_heads_in_group": 16,
|
2860 |
+
"no_op": false,
|
2861 |
+
"num_sink_tokens": null,
|
2862 |
+
"replace_with_linear": false,
|
2863 |
+
"sparsify": null,
|
2864 |
+
"unshifted_sink": false,
|
2865 |
+
"use_prefill_window_in_sink_attention": false,
|
2866 |
+
"window_length": null
|
2867 |
+
},
|
2868 |
+
"ffn": {
|
2869 |
+
"ffn_mult": 4.875,
|
2870 |
+
"no_op": false,
|
2871 |
+
"replace_with_linear": false,
|
2872 |
+
"sparsify": null
|
2873 |
+
}
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"attention": {
|
2877 |
+
"n_heads_in_group": 16,
|
2878 |
+
"no_op": false,
|
2879 |
+
"num_sink_tokens": null,
|
2880 |
+
"replace_with_linear": false,
|
2881 |
+
"sparsify": null,
|
2882 |
+
"unshifted_sink": false,
|
2883 |
+
"use_prefill_window_in_sink_attention": false,
|
2884 |
+
"window_length": null
|
2885 |
+
},
|
2886 |
+
"ffn": {
|
2887 |
+
"ffn_mult": 4.875,
|
2888 |
+
"no_op": false,
|
2889 |
+
"replace_with_linear": false,
|
2890 |
+
"sparsify": null
|
2891 |
+
}
|
2892 |
+
},
|
2893 |
+
{
|
2894 |
+
"attention": {
|
2895 |
+
"n_heads_in_group": 16,
|
2896 |
+
"no_op": false,
|
2897 |
+
"num_sink_tokens": null,
|
2898 |
+
"replace_with_linear": false,
|
2899 |
+
"sparsify": null,
|
2900 |
+
"unshifted_sink": false,
|
2901 |
+
"use_prefill_window_in_sink_attention": false,
|
2902 |
+
"window_length": null
|
2903 |
+
},
|
2904 |
+
"ffn": {
|
2905 |
+
"ffn_mult": 4.875,
|
2906 |
+
"no_op": false,
|
2907 |
+
"replace_with_linear": false,
|
2908 |
+
"sparsify": null
|
2909 |
+
}
|
2910 |
+
},
|
2911 |
+
{
|
2912 |
+
"attention": {
|
2913 |
+
"n_heads_in_group": 16,
|
2914 |
+
"no_op": false,
|
2915 |
+
"num_sink_tokens": null,
|
2916 |
+
"replace_with_linear": false,
|
2917 |
+
"sparsify": null,
|
2918 |
+
"unshifted_sink": false,
|
2919 |
+
"use_prefill_window_in_sink_attention": false,
|
2920 |
+
"window_length": null
|
2921 |
+
},
|
2922 |
+
"ffn": {
|
2923 |
+
"ffn_mult": 2.4375,
|
2924 |
+
"no_op": false,
|
2925 |
+
"replace_with_linear": false,
|
2926 |
+
"sparsify": null
|
2927 |
+
}
|
2928 |
+
}
|
2929 |
+
],
|
2930 |
+
"bos_token_id": 128000,
|
2931 |
+
"eos_token_id": [
|
2932 |
+
128001,
|
2933 |
+
128008,
|
2934 |
+
128009
|
2935 |
+
],
|
2936 |
+
"hidden_act": "silu",
|
2937 |
+
"hidden_size": 16384,
|
2938 |
+
"initializer_range": 0.02,
|
2939 |
+
"intermediate_size": null,
|
2940 |
+
"max_position_embeddings": 131072,
|
2941 |
+
"mlp_bias": false,
|
2942 |
+
"model_type": "nemotron-nas",
|
2943 |
+
"num_attention_heads": 128,
|
2944 |
+
"num_hidden_layers": 162,
|
2945 |
+
"num_key_value_heads": null,
|
2946 |
+
"pretraining_tp": 1,
|
2947 |
+
"rms_norm_eps": 1e-05,
|
2948 |
+
"rope_scaling": {
|
2949 |
+
"factor": 16.0,
|
2950 |
+
"high_freq_factor": 4.0,
|
2951 |
+
"low_freq_factor": 1.0,
|
2952 |
+
"original_max_position_embeddings": 8192,
|
2953 |
+
"rope_type": "llama3"
|
2954 |
+
},
|
2955 |
+
"rope_theta": 500000.0,
|
2956 |
+
"tie_word_embeddings": false,
|
2957 |
+
"torch_dtype": "bfloat16",
|
2958 |
+
"transformers_version": "4.45.1",
|
2959 |
+
"use_cache": true,
|
2960 |
+
"vocab_size": 128256,
|
2961 |
+
"quantization_config": {
|
2962 |
+
"quant_method": "exl3",
|
2963 |
+
"version": "0.0.1",
|
2964 |
+
"bits": 3.45,
|
2965 |
+
"head_bits": 6,
|
2966 |
+
"calibration": {
|
2967 |
+
"rows": 100,
|
2968 |
+
"cols": 2048
|
2969 |
+
},
|
2970 |
+
"out_scales": "auto"
|
2971 |
+
}
|
2972 |
+
}
|
configuration_decilm.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Nvidia Corporation. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import dataclasses
|
17 |
+
import warnings
|
18 |
+
from typing import Dict, Any
|
19 |
+
|
20 |
+
from transformers.utils import is_flash_attn_2_available
|
21 |
+
|
22 |
+
from .block_config import BlockConfig
|
23 |
+
from .transformers_4_44_2__configuration_llama import LlamaConfig
|
24 |
+
from .transformers_4_44_2__modeling_rope_utils import \
|
25 |
+
rope_config_validation # fake import to make AutoConfig infer the dependency
|
26 |
+
|
27 |
+
rope_config_validation # this line is here to make sure that auto-formatting doesn't remove the import
|
28 |
+
|
29 |
+
|
30 |
+
class DeciLMConfig(LlamaConfig):
|
31 |
+
model_type = "nemotron-nas"
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
block_configs: list[dict] | list[BlockConfig] = None,
|
36 |
+
**kwargs,
|
37 |
+
):
|
38 |
+
attn_implementation = kwargs.pop("attn_implementation", None)
|
39 |
+
if attn_implementation is None and is_flash_attn_2_available():
|
40 |
+
attn_implementation = "flash_attention_2"
|
41 |
+
|
42 |
+
if block_configs is not None:
|
43 |
+
if isinstance(block_configs[0], dict):
|
44 |
+
block_configs = [BlockConfig(**conf) for conf in block_configs]
|
45 |
+
|
46 |
+
using_unshifted_sink = any([block_config.attention.unshifted_sink for block_config in block_configs])
|
47 |
+
if using_unshifted_sink and attn_implementation != "eager":
|
48 |
+
warnings.warn("Forcing attn_implementation='eager' since some attention layers use unshifted sink")
|
49 |
+
attn_implementation = "eager"
|
50 |
+
|
51 |
+
super().__init__(attn_implementation=attn_implementation, **kwargs)
|
52 |
+
|
53 |
+
self.intermediate_size = None
|
54 |
+
self.num_key_value_heads = None
|
55 |
+
|
56 |
+
if block_configs is not None:
|
57 |
+
assert len(block_configs) == self.num_hidden_layers
|
58 |
+
|
59 |
+
self.block_configs: list[BlockConfig] = block_configs
|
60 |
+
|
61 |
+
def to_dict(self) -> Dict[str, Any]:
|
62 |
+
self_dict = super().to_dict()
|
63 |
+
if self.block_configs is not None:
|
64 |
+
self_dict["block_configs"] = [dataclasses.asdict(conf) for conf in self.block_configs]
|
65 |
+
return self_dict
|
model-00001-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f483721b59acce9b84aec2f5486b0da785cc1621023da50a266d0c24f457bd7d
|
3 |
+
size 8559470168
|
model-00002-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1588d1685d8481721700a5187f5739040dd2873a08c06c9e60109cc532c04b02
|
3 |
+
size 8298966336
|
model-00003-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c202cbac6af85611dc745ec2c46c41960a5bd84ecaccf6e2d0b6afe5b97ac5ef
|
3 |
+
size 8431117688
|
model-00004-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fa4c85ccc330867766193ae00b3bc98bce97dde5e59c66036c968035692c0d5
|
3 |
+
size 8436793520
|
model-00005-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:648e081717f543558b801cb00c16be8c3f531c2ab1da3596a38837be487f5aa5
|
3 |
+
size 8283675152
|
model-00006-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b0ee736386ab6f9c708d7579ae14d54530e06bc8bd06e902fbf53543f5a3ef1
|
3 |
+
size 8248023568
|
model-00007-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:744dea8ca02cab520726fc1c962ca44218df57e23f8a6ca9ddba92ed471816a0
|
3 |
+
size 8399791016
|
model-00008-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c737640754d4fed981a55f0558a4e6e355cc5f6130a3b8543e7335fa5f7c979
|
3 |
+
size 8428369552
|
model-00009-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d023790265c09ea0933f49f63641fbb6ae7750eda23c62c72358d0344afeada
|
3 |
+
size 2509331936
|
model-00010-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0588da9d0aa8f1a78326f1dae03ab549d3c45ac107e61e333398ef2662484d40
|
3 |
+
size 8182116528
|
model-00011-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c86b0ebfc3b44e1630aafaab4a56b472ba23c7a66f02f50406f3823f93c4d107
|
3 |
+
size 8727535792
|
model-00012-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc7d52fd86a39345cec7bff4773bc3ca659f527159da12b5f1eb08bfac6c1690
|
3 |
+
size 7730791584
|
model-00013-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:560edb02aae3ee25411d822ac3a7bd68dc34ae3f017d87d10cee00db2219eb43
|
3 |
+
size 8499282024
|
model-00014-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9230a93e538b29ba75bb5f989117f19318804242f5c2eb45289efa960ed96b70
|
3 |
+
size 8141340744
|
model-00015-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d18464ca6fef580a9342f9d13f5ae1a0075864c1354422fb4e474199c6ee477
|
3 |
+
size 2411525368
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_decilm.py
ADDED
@@ -0,0 +1,1681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Nvidia Corporation, Google Inc, HuggingFace Inc, EleutherAI. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code for Nvidia's model is based on the Llama modeling code by HuggingFace,
|
5 |
+
# which is in turn based on EleutherAI's GPT-NeoX library and the GPT-NeoX and
|
6 |
+
# OPT implementations in this library.
|
7 |
+
# Sliding window code based on Gemma2 by Google.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
from transformers import GenerationConfig
|
30 |
+
from transformers.generation.utils import NEED_SETUP_CACHE_CLASSES_MAPPING, GenerationMixin, GenerateOutput
|
31 |
+
from transformers.modeling_utils import PreTrainedModel
|
32 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
33 |
+
from transformers.utils import (
|
34 |
+
add_start_docstrings,
|
35 |
+
add_start_docstrings_to_model_forward,
|
36 |
+
is_flash_attn_greater_or_equal_2_10,
|
37 |
+
logging,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
|
41 |
+
from .block_config import AttentionConfig, FFNConfig
|
42 |
+
from .configuration_decilm import DeciLMConfig
|
43 |
+
from .transformers_4_44_2__activations import ACT2FN
|
44 |
+
from .transformers_4_44_2__cache_utils import Cache, StaticCache
|
45 |
+
from .transformers_4_44_2__modeling_attn_mask_utils import AttentionMaskConverter
|
46 |
+
from .transformers_4_44_2__modeling_flash_attention_utils_backward_compat import _flash_attention_forward
|
47 |
+
from .transformers_4_44_2__modeling_outputs import (
|
48 |
+
BaseModelOutputWithPast,
|
49 |
+
CausalLMOutputWithPast,
|
50 |
+
QuestionAnsweringModelOutput,
|
51 |
+
SequenceClassifierOutputWithPast,
|
52 |
+
TokenClassifierOutput,
|
53 |
+
)
|
54 |
+
from .transformers_4_44_2__modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
55 |
+
from .transformers_4_44_2__pytorch_utils import ALL_LAYERNORM_LAYERS
|
56 |
+
from .variable_cache import VariableCache
|
57 |
+
|
58 |
+
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES[DeciLMConfig.model_type] = "DeciLMForCausalLM"
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
_CONFIG_FOR_DOC = "DeciLMConfig"
|
62 |
+
|
63 |
+
|
64 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
65 |
+
attention_mask: torch.Tensor,
|
66 |
+
sequence_length: int,
|
67 |
+
target_length: int,
|
68 |
+
dtype: torch.dtype,
|
69 |
+
device: torch.device,
|
70 |
+
min_dtype: float,
|
71 |
+
cache_position: torch.Tensor,
|
72 |
+
batch_size: int,
|
73 |
+
):
|
74 |
+
"""
|
75 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
76 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
attention_mask (`torch.Tensor`):
|
80 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
81 |
+
sequence_length (`int`):
|
82 |
+
The sequence length being processed.
|
83 |
+
target_length (`int`):
|
84 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
85 |
+
dtype (`torch.dtype`):
|
86 |
+
The dtype to use for the 4D attention mask.
|
87 |
+
device (`torch.device`):
|
88 |
+
The device to place the 4D attention mask on.
|
89 |
+
min_dtype (`float`):
|
90 |
+
The minimum value representable with the dtype `dtype`.
|
91 |
+
cache_position (`torch.Tensor`):
|
92 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
93 |
+
batch_size (`torch.Tensor`):
|
94 |
+
Batch size.
|
95 |
+
"""
|
96 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
97 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
98 |
+
causal_mask = attention_mask
|
99 |
+
else:
|
100 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
101 |
+
if sequence_length != 1:
|
102 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
103 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
104 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
105 |
+
if attention_mask is not None:
|
106 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
107 |
+
mask_length = attention_mask.shape[-1]
|
108 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
109 |
+
padding_mask = padding_mask == 0
|
110 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
111 |
+
padding_mask, min_dtype
|
112 |
+
)
|
113 |
+
|
114 |
+
return causal_mask
|
115 |
+
|
116 |
+
|
117 |
+
class DeciLMRMSNorm(nn.Module):
|
118 |
+
def __init__(self, hidden_size, eps=1e-6):
|
119 |
+
"""
|
120 |
+
DeciLMRMSNorm is equivalent to T5LayerNorm
|
121 |
+
"""
|
122 |
+
super().__init__()
|
123 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
124 |
+
self.variance_epsilon = eps
|
125 |
+
|
126 |
+
def forward(self, hidden_states):
|
127 |
+
input_dtype = hidden_states.dtype
|
128 |
+
hidden_states = hidden_states.to(torch.float32)
|
129 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
130 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
131 |
+
return self.weight * hidden_states.to(input_dtype)
|
132 |
+
|
133 |
+
def extra_repr(self):
|
134 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
135 |
+
|
136 |
+
|
137 |
+
ALL_LAYERNORM_LAYERS.append(DeciLMRMSNorm)
|
138 |
+
|
139 |
+
|
140 |
+
class DeciLMRotaryEmbedding(nn.Module):
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
dim=None,
|
144 |
+
max_position_embeddings=2048,
|
145 |
+
base=10000,
|
146 |
+
device=None,
|
147 |
+
scaling_factor=1.0,
|
148 |
+
rope_type="default",
|
149 |
+
config: Optional[DeciLMConfig] = None,
|
150 |
+
):
|
151 |
+
super().__init__()
|
152 |
+
# TODO (joao): remove the `if` below, only used for BC
|
153 |
+
self.rope_kwargs = {}
|
154 |
+
if config is None:
|
155 |
+
logger.warning_once(
|
156 |
+
"`DeciLMRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
157 |
+
"`config` argument. All other arguments will be removed in v4.45"
|
158 |
+
)
|
159 |
+
self.rope_kwargs = {
|
160 |
+
"rope_type": rope_type,
|
161 |
+
"factor": scaling_factor,
|
162 |
+
"dim": dim,
|
163 |
+
"base": base,
|
164 |
+
"max_position_embeddings": max_position_embeddings,
|
165 |
+
}
|
166 |
+
self.rope_type = rope_type
|
167 |
+
self.max_seq_len_cached = max_position_embeddings
|
168 |
+
self.original_max_seq_len = max_position_embeddings
|
169 |
+
else:
|
170 |
+
# BC: "rope_type" was originally "type"
|
171 |
+
if config.rope_scaling is not None:
|
172 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
173 |
+
else:
|
174 |
+
self.rope_type = "default"
|
175 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
176 |
+
self.original_max_seq_len = config.max_position_embeddings
|
177 |
+
|
178 |
+
self.config = config
|
179 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
180 |
+
|
181 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
182 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
183 |
+
self.original_inv_freq = self.inv_freq
|
184 |
+
|
185 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
186 |
+
"""
|
187 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
188 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
189 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
190 |
+
"""
|
191 |
+
seq_len = torch.max(position_ids) + 1
|
192 |
+
if seq_len > self.max_seq_len_cached: # growth
|
193 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
194 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
195 |
+
)
|
196 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
197 |
+
self.max_seq_len_cached = seq_len
|
198 |
+
|
199 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
200 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
201 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
202 |
+
|
203 |
+
@torch.no_grad()
|
204 |
+
def forward(self, x, position_ids):
|
205 |
+
if "dynamic" in self.rope_type:
|
206 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
207 |
+
|
208 |
+
# Core RoPE block
|
209 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
210 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
211 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
212 |
+
device_type = x.device.type
|
213 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
214 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
215 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
216 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
217 |
+
cos = emb.cos()
|
218 |
+
sin = emb.sin()
|
219 |
+
|
220 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
221 |
+
cos = cos * self.attention_scaling
|
222 |
+
sin = sin * self.attention_scaling
|
223 |
+
|
224 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
225 |
+
|
226 |
+
|
227 |
+
class DeciLMLinearScalingRotaryEmbedding(DeciLMRotaryEmbedding):
|
228 |
+
"""DeciLMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
229 |
+
|
230 |
+
def __init__(self, *args, **kwargs):
|
231 |
+
logger.warning_once(
|
232 |
+
"`DeciLMLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
|
233 |
+
"`DeciLMRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
|
234 |
+
)
|
235 |
+
kwargs["rope_type"] = "linear"
|
236 |
+
super().__init__(*args, **kwargs)
|
237 |
+
|
238 |
+
|
239 |
+
class DeciLMDynamicNTKScalingRotaryEmbedding(DeciLMRotaryEmbedding):
|
240 |
+
"""DeciLMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
241 |
+
|
242 |
+
def __init__(self, *args, **kwargs):
|
243 |
+
logger.warning_once(
|
244 |
+
"`DeciLMDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
|
245 |
+
"`DeciLMRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
|
246 |
+
"__init__)."
|
247 |
+
)
|
248 |
+
kwargs["rope_type"] = "dynamic"
|
249 |
+
super().__init__(*args, **kwargs)
|
250 |
+
|
251 |
+
|
252 |
+
def rotate_half(x):
|
253 |
+
"""Rotates half the hidden dims of the input."""
|
254 |
+
x1 = x[..., : x.shape[-1] // 2]
|
255 |
+
x2 = x[..., x.shape[-1] // 2:]
|
256 |
+
return torch.cat((-x2, x1), dim=-1)
|
257 |
+
|
258 |
+
|
259 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
260 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
q (`torch.Tensor`): The query tensor.
|
264 |
+
k (`torch.Tensor`): The key tensor.
|
265 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
266 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
267 |
+
position_ids (`torch.Tensor`, *optional*):
|
268 |
+
Deprecated and unused.
|
269 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
270 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
271 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
272 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
273 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
274 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
275 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
276 |
+
Returns:
|
277 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
278 |
+
"""
|
279 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
280 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
281 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
282 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
283 |
+
return q_embed, k_embed
|
284 |
+
|
285 |
+
|
286 |
+
class DeciLMMLP(nn.Module):
|
287 |
+
def __init__(self,
|
288 |
+
config: DeciLMConfig,
|
289 |
+
ffn_config: FFNConfig,
|
290 |
+
):
|
291 |
+
super().__init__()
|
292 |
+
self.config = config
|
293 |
+
self.ffn_config = ffn_config
|
294 |
+
self.hidden_size = config.hidden_size
|
295 |
+
self.intermediate_size = _ffn_mult_to_intermediate_size(
|
296 |
+
ffn_config.ffn_mult, config.hidden_size) # DeciLM-specific code
|
297 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
298 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
299 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
300 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
301 |
+
|
302 |
+
if ffn_config.sparsify is not None:
|
303 |
+
self.register_full_backward_hook(sparsity_backward_hook)
|
304 |
+
|
305 |
+
def forward(self, x):
|
306 |
+
if self.config.pretraining_tp > 1:
|
307 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
308 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
309 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
310 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
311 |
+
|
312 |
+
gate_proj = torch.cat(
|
313 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
314 |
+
)
|
315 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
316 |
+
|
317 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
318 |
+
down_proj = [
|
319 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
320 |
+
]
|
321 |
+
down_proj = sum(down_proj)
|
322 |
+
else:
|
323 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
324 |
+
|
325 |
+
return down_proj
|
326 |
+
|
327 |
+
|
328 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
329 |
+
"""
|
330 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
331 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
332 |
+
"""
|
333 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
334 |
+
if n_rep == 1:
|
335 |
+
return hidden_states
|
336 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
337 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
338 |
+
|
339 |
+
|
340 |
+
class DeciLMAttention(nn.Module):
|
341 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
342 |
+
|
343 |
+
def __init__(self,
|
344 |
+
config: DeciLMConfig,
|
345 |
+
attention_config: AttentionConfig,
|
346 |
+
layer_idx: Optional[int] = None,
|
347 |
+
):
|
348 |
+
super().__init__()
|
349 |
+
self.config = config
|
350 |
+
self.attention_config = attention_config
|
351 |
+
self.layer_idx = layer_idx
|
352 |
+
if layer_idx is None:
|
353 |
+
logger.warning_once(
|
354 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
355 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
356 |
+
"when creating this class."
|
357 |
+
)
|
358 |
+
|
359 |
+
self.attention_dropout = config.attention_dropout
|
360 |
+
self.hidden_size = config.hidden_size
|
361 |
+
self.num_heads = config.num_attention_heads
|
362 |
+
self.head_dim = self.hidden_size // self.num_heads
|
363 |
+
self.num_key_value_groups = attention_config.n_heads_in_group # DeciLM-specific code
|
364 |
+
self.num_key_value_heads = self.num_heads // self.num_key_value_groups # DeciLM-specific code
|
365 |
+
self.max_position_embeddings = config.max_position_embeddings
|
366 |
+
self.rope_theta = config.rope_theta
|
367 |
+
self.is_causal = True
|
368 |
+
|
369 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
370 |
+
raise ValueError(
|
371 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
372 |
+
f" and `num_heads`: {self.num_heads})."
|
373 |
+
)
|
374 |
+
|
375 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
376 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
377 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
378 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
379 |
+
|
380 |
+
# TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
|
381 |
+
self.rotary_emb = DeciLMRotaryEmbedding(config=self.config)
|
382 |
+
|
383 |
+
if attention_config.sparsify is not None:
|
384 |
+
self.register_full_backward_hook(sparsity_backward_hook)
|
385 |
+
|
386 |
+
def forward(
|
387 |
+
self,
|
388 |
+
hidden_states: torch.Tensor,
|
389 |
+
attention_mask: Optional[torch.Tensor] = None,
|
390 |
+
position_ids: Optional[torch.LongTensor] = None,
|
391 |
+
past_key_value: Optional[Cache] = None,
|
392 |
+
output_attentions: bool = False,
|
393 |
+
use_cache: bool = False,
|
394 |
+
cache_position: Optional[torch.LongTensor] = None,
|
395 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
396 |
+
**kwargs,
|
397 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
398 |
+
bsz, q_len, _ = hidden_states.size()
|
399 |
+
if self.config.pretraining_tp > 1:
|
400 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
401 |
+
query_slices = self.q_proj.weight.split(
|
402 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
403 |
+
)
|
404 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
405 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
406 |
+
|
407 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
408 |
+
query_states = torch.cat(query_states, dim=-1)
|
409 |
+
|
410 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
411 |
+
key_states = torch.cat(key_states, dim=-1)
|
412 |
+
|
413 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
414 |
+
value_states = torch.cat(value_states, dim=-1)
|
415 |
+
|
416 |
+
else:
|
417 |
+
query_states = self.q_proj(hidden_states)
|
418 |
+
key_states = self.k_proj(hidden_states)
|
419 |
+
value_states = self.v_proj(hidden_states)
|
420 |
+
|
421 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
422 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
423 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
424 |
+
|
425 |
+
if position_embeddings is None:
|
426 |
+
logger.warning_once(
|
427 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
428 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
429 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
|
430 |
+
"removed and `position_embeddings` will be mandatory."
|
431 |
+
)
|
432 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
433 |
+
else:
|
434 |
+
cos, sin = position_embeddings
|
435 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
436 |
+
|
437 |
+
if past_key_value is not None:
|
438 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
439 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
440 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
441 |
+
|
442 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
443 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
444 |
+
|
445 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
446 |
+
|
447 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
448 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
449 |
+
attn_weights = attn_weights + causal_mask
|
450 |
+
|
451 |
+
# upcast attention to fp32
|
452 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
453 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
454 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
455 |
+
|
456 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
457 |
+
raise ValueError(
|
458 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
459 |
+
f" {attn_output.size()}"
|
460 |
+
)
|
461 |
+
|
462 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
463 |
+
|
464 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
465 |
+
|
466 |
+
if self.config.pretraining_tp > 1:
|
467 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
468 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
469 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
470 |
+
else:
|
471 |
+
attn_output = self.o_proj(attn_output)
|
472 |
+
|
473 |
+
if not output_attentions:
|
474 |
+
attn_weights = None
|
475 |
+
|
476 |
+
return attn_output, attn_weights, past_key_value
|
477 |
+
|
478 |
+
|
479 |
+
class DeciLMFlashAttention2(DeciLMAttention):
|
480 |
+
"""
|
481 |
+
DeciLM flash attention module. This module inherits from `DeciLMAttention` as the weights of the module stays
|
482 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
483 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
484 |
+
"""
|
485 |
+
|
486 |
+
def __init__(self, *args, **kwargs):
|
487 |
+
super().__init__(*args, **kwargs)
|
488 |
+
|
489 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
490 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
491 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
492 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
493 |
+
|
494 |
+
self.sliding_window = self.attention_config.prefill_sliding_window
|
495 |
+
|
496 |
+
def forward(
|
497 |
+
self,
|
498 |
+
hidden_states: torch.Tensor,
|
499 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
500 |
+
position_ids: Optional[torch.LongTensor] = None,
|
501 |
+
past_key_value: Optional[Cache] = None,
|
502 |
+
output_attentions: bool = False,
|
503 |
+
use_cache: bool = False,
|
504 |
+
cache_position: Optional[torch.LongTensor] = None,
|
505 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
506 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
507 |
+
output_attentions = False
|
508 |
+
|
509 |
+
bsz, q_len, _ = hidden_states.size()
|
510 |
+
|
511 |
+
query_states = self.q_proj(hidden_states)
|
512 |
+
key_states = self.k_proj(hidden_states)
|
513 |
+
value_states = self.v_proj(hidden_states)
|
514 |
+
|
515 |
+
# Flash attention requires the input to have the shape
|
516 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
517 |
+
# therefore we just need to keep the original shape
|
518 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
519 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
520 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
521 |
+
|
522 |
+
if position_embeddings is None:
|
523 |
+
logger.warning_once(
|
524 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
525 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
526 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
|
527 |
+
"removed and `position_embeddings` will be mandatory."
|
528 |
+
)
|
529 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
530 |
+
else:
|
531 |
+
cos, sin = position_embeddings
|
532 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
533 |
+
|
534 |
+
if past_key_value is not None:
|
535 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
536 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
537 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
538 |
+
|
539 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
540 |
+
# to be able to avoid many of these transpose/reshape/view.
|
541 |
+
query_states = query_states.transpose(1, 2)
|
542 |
+
key_states = key_states.transpose(1, 2)
|
543 |
+
value_states = value_states.transpose(1, 2)
|
544 |
+
|
545 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
546 |
+
|
547 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
548 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
549 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
550 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
551 |
+
# in fp32. (DeciLMRMSNorm handles it correctly)
|
552 |
+
|
553 |
+
input_dtype = query_states.dtype
|
554 |
+
if input_dtype == torch.float32:
|
555 |
+
if torch.is_autocast_enabled():
|
556 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
557 |
+
# Handle the case where the model is quantized
|
558 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
559 |
+
target_dtype = self.config._pre_quantization_dtype
|
560 |
+
else:
|
561 |
+
target_dtype = self.q_proj.weight.dtype
|
562 |
+
|
563 |
+
logger.warning_once(
|
564 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
565 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
566 |
+
f" {target_dtype}."
|
567 |
+
)
|
568 |
+
|
569 |
+
query_states = query_states.to(target_dtype)
|
570 |
+
key_states = key_states.to(target_dtype)
|
571 |
+
value_states = value_states.to(target_dtype)
|
572 |
+
|
573 |
+
attn_output = _flash_attention_forward(
|
574 |
+
query_states,
|
575 |
+
key_states,
|
576 |
+
value_states,
|
577 |
+
attention_mask,
|
578 |
+
q_len,
|
579 |
+
position_ids=position_ids,
|
580 |
+
dropout=dropout_rate,
|
581 |
+
sliding_window=self.sliding_window,
|
582 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
583 |
+
is_causal=self.is_causal,
|
584 |
+
)
|
585 |
+
|
586 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
587 |
+
attn_output = self.o_proj(attn_output)
|
588 |
+
|
589 |
+
if not output_attentions:
|
590 |
+
attn_weights = None
|
591 |
+
|
592 |
+
return attn_output, attn_weights, past_key_value
|
593 |
+
|
594 |
+
|
595 |
+
DECILM_ATTENTION_CLASSES = {
|
596 |
+
"eager": DeciLMAttention,
|
597 |
+
"flash_attention_2": DeciLMFlashAttention2,
|
598 |
+
}
|
599 |
+
|
600 |
+
|
601 |
+
class DeciLMDecoderLayer(nn.Module):
|
602 |
+
# DeciLM-specific code
|
603 |
+
def __init__(self, config: DeciLMConfig, layer_idx: int):
|
604 |
+
super().__init__()
|
605 |
+
self.config = config
|
606 |
+
self.hidden_size = config.hidden_size
|
607 |
+
self.block_config = config.block_configs[layer_idx]
|
608 |
+
self.attention_config = self.block_config.attention
|
609 |
+
self.ffn_config = self.block_config.ffn
|
610 |
+
|
611 |
+
if not self.attention_config.no_op:
|
612 |
+
self.input_layernorm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
613 |
+
if not self.attention_config.replace_with_linear:
|
614 |
+
self.self_attn = DECILM_ATTENTION_CLASSES[config._attn_implementation](
|
615 |
+
config=config, attention_config=self.attention_config, layer_idx=layer_idx)
|
616 |
+
else:
|
617 |
+
self.self_attn = DeciLMLinearAttention(config)
|
618 |
+
|
619 |
+
if not self.ffn_config.no_op:
|
620 |
+
self.post_attention_layernorm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
621 |
+
if not self.ffn_config.replace_with_linear:
|
622 |
+
self.mlp = DeciLMMLP(config, self.ffn_config)
|
623 |
+
else:
|
624 |
+
self.mlp = DeciLMLinearMLP(config)
|
625 |
+
|
626 |
+
self.is_sliding = self.attention_config.is_sliding
|
627 |
+
self.sliding_window = self.attention_config.prefill_sliding_window
|
628 |
+
|
629 |
+
def forward(
|
630 |
+
self,
|
631 |
+
hidden_states: torch.Tensor,
|
632 |
+
attention_mask: Optional[torch.Tensor] = None,
|
633 |
+
position_ids: Optional[torch.LongTensor] = None,
|
634 |
+
past_key_value: Optional[Cache] = None,
|
635 |
+
output_attentions: Optional[bool] = False,
|
636 |
+
use_cache: Optional[bool] = False,
|
637 |
+
cache_position: Optional[torch.LongTensor] = None,
|
638 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
639 |
+
**kwargs,
|
640 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
641 |
+
"""
|
642 |
+
Args:
|
643 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
644 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
645 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
646 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
647 |
+
output_attentions (`bool`, *optional*):
|
648 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
649 |
+
returned tensors for more detail.
|
650 |
+
use_cache (`bool`, *optional*):
|
651 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
652 |
+
(see `past_key_values`).
|
653 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
654 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
655 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
656 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
657 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
658 |
+
with `head_dim` being the embedding dimension of each attention head.
|
659 |
+
kwargs (`dict`, *optional*):
|
660 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
661 |
+
into the model
|
662 |
+
"""
|
663 |
+
if self.attention_config.unshifted_sink and self.attention_config.is_sink:
|
664 |
+
attention_mask = self._unshifted_sink_mask(
|
665 |
+
attention_mask, hidden_states,
|
666 |
+
self.attention_config.window_length, self.attention_config.num_sink_tokens)
|
667 |
+
else:
|
668 |
+
attention_mask = self._gemma2_window_mask(attention_mask, hidden_states, past_key_value)
|
669 |
+
|
670 |
+
self_attn_weights = None
|
671 |
+
present_key_value = past_key_value
|
672 |
+
if self.attention_config.no_op:
|
673 |
+
pass
|
674 |
+
elif self.attention_config.replace_with_linear:
|
675 |
+
residual = hidden_states
|
676 |
+
hidden_states = self.input_layernorm(hidden_states)
|
677 |
+
hidden_states = self.self_attn(hidden_states)
|
678 |
+
hidden_states = residual + hidden_states
|
679 |
+
else:
|
680 |
+
residual = hidden_states
|
681 |
+
hidden_states = self.input_layernorm(hidden_states)
|
682 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
683 |
+
hidden_states=hidden_states,
|
684 |
+
attention_mask=attention_mask,
|
685 |
+
position_ids=position_ids,
|
686 |
+
past_key_value=past_key_value,
|
687 |
+
output_attentions=output_attentions,
|
688 |
+
use_cache=use_cache,
|
689 |
+
cache_position=cache_position,
|
690 |
+
position_embeddings=position_embeddings,
|
691 |
+
**kwargs,
|
692 |
+
)
|
693 |
+
hidden_states = residual + hidden_states
|
694 |
+
|
695 |
+
if not self.ffn_config.no_op:
|
696 |
+
residual = hidden_states
|
697 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
698 |
+
hidden_states = self.mlp(hidden_states)
|
699 |
+
hidden_states = residual + hidden_states
|
700 |
+
|
701 |
+
outputs = (hidden_states,)
|
702 |
+
|
703 |
+
if output_attentions:
|
704 |
+
outputs += (self_attn_weights,)
|
705 |
+
|
706 |
+
if use_cache:
|
707 |
+
outputs += (present_key_value,)
|
708 |
+
|
709 |
+
return outputs
|
710 |
+
|
711 |
+
def _gemma2_window_mask(self,
|
712 |
+
attention_mask: Optional[torch.Tensor],
|
713 |
+
hidden_states: torch.Tensor,
|
714 |
+
past_key_value: Optional[VariableCache],
|
715 |
+
) -> Optional[torch.Tensor]:
|
716 |
+
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
|
717 |
+
# Flash-attn is a 2D tensor
|
718 |
+
if self.config._attn_implementation == "flash_attention_2":
|
719 |
+
if past_key_value is not None: # when decoding
|
720 |
+
attention_mask = attention_mask[:, -self.sliding_window:]
|
721 |
+
else:
|
722 |
+
min_dtype = torch.finfo(hidden_states.dtype).min
|
723 |
+
sliding_window_mask = torch.tril(
|
724 |
+
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
|
725 |
+
)
|
726 |
+
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
|
727 |
+
if attention_mask.shape[-1] <= 1: # when decoding
|
728 |
+
attention_mask = attention_mask[:, :, :, -self.sliding_window:]
|
729 |
+
return attention_mask
|
730 |
+
|
731 |
+
def _unshifted_sink_mask(self,
|
732 |
+
attention_mask: torch.Tensor,
|
733 |
+
hidden_states: torch.Tensor,
|
734 |
+
window_length: int,
|
735 |
+
num_sink_tokens: Optional[int],
|
736 |
+
) -> torch.Tensor:
|
737 |
+
assert self.config._attn_implementation == "eager", "Unshifted sink is only supported in 'eager' mode."
|
738 |
+
assert attention_mask is not None, "The attention mask seems to not be prepared"
|
739 |
+
|
740 |
+
attention_mask = attention_mask.clone()
|
741 |
+
min_dtype = torch.finfo(hidden_states.dtype).min
|
742 |
+
|
743 |
+
if window_length == 0:
|
744 |
+
attention_mask = torch.full_like(attention_mask, fill_value=min_dtype)
|
745 |
+
else:
|
746 |
+
query_length = attention_mask.shape[-2]
|
747 |
+
is_decode = (query_length == 1)
|
748 |
+
if is_decode:
|
749 |
+
attention_mask[:, :, :, :-window_length] = min_dtype
|
750 |
+
else:
|
751 |
+
sliding_window_mask = torch.tril(
|
752 |
+
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-window_length
|
753 |
+
)
|
754 |
+
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
|
755 |
+
|
756 |
+
attention_mask[:, :, :, :num_sink_tokens] = 0
|
757 |
+
return attention_mask
|
758 |
+
|
759 |
+
|
760 |
+
DECILM_START_DOCSTRING = r"""
|
761 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
762 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
763 |
+
etc.)
|
764 |
+
|
765 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
766 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
767 |
+
and behavior.
|
768 |
+
|
769 |
+
Parameters:
|
770 |
+
config ([`DeciLMConfig`]):
|
771 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
772 |
+
load the weights associated with the model, only the configuration. Check out the
|
773 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
774 |
+
"""
|
775 |
+
|
776 |
+
|
777 |
+
@add_start_docstrings(
|
778 |
+
"The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
|
779 |
+
DECILM_START_DOCSTRING,
|
780 |
+
)
|
781 |
+
class DeciLMPreTrainedModel(PreTrainedModel):
|
782 |
+
config_class = DeciLMConfig
|
783 |
+
base_model_prefix = "model"
|
784 |
+
supports_gradient_checkpointing = True
|
785 |
+
_no_split_modules = ["DeciLMDecoderLayer"]
|
786 |
+
_skip_keys_device_placement = ["past_key_values"]
|
787 |
+
_supports_flash_attn_2 = True
|
788 |
+
_supports_sdpa = False
|
789 |
+
_supports_cache_class = True
|
790 |
+
_supports_quantized_cache = False
|
791 |
+
_supports_static_cache = True
|
792 |
+
|
793 |
+
def _init_weights(self, module):
|
794 |
+
std = self.config.initializer_range
|
795 |
+
if isinstance(module, nn.Linear):
|
796 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
797 |
+
if module.bias is not None:
|
798 |
+
module.bias.data.zero_()
|
799 |
+
elif isinstance(module, nn.Embedding):
|
800 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
801 |
+
if module.padding_idx is not None:
|
802 |
+
module.weight.data[module.padding_idx].zero_()
|
803 |
+
|
804 |
+
def _prepare_generation_config(
|
805 |
+
self, generation_config: Optional[GenerationConfig], **kwargs: dict
|
806 |
+
) -> tuple[GenerationConfig, dict]:
|
807 |
+
# DeciLM-specific code
|
808 |
+
generation_config, model_kwargs = super()._prepare_generation_config(generation_config, **kwargs)
|
809 |
+
generation_config.cache_implementation = "variable"
|
810 |
+
NEED_SETUP_CACHE_CLASSES_MAPPING["variable"] = VariableCache
|
811 |
+
return generation_config, model_kwargs
|
812 |
+
|
813 |
+
|
814 |
+
DECILM_INPUTS_DOCSTRING = r"""
|
815 |
+
Args:
|
816 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
817 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
818 |
+
it.
|
819 |
+
|
820 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
821 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
822 |
+
|
823 |
+
[What are input IDs?](../glossary#input-ids)
|
824 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
825 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
826 |
+
|
827 |
+
- 1 for tokens that are **not masked**,
|
828 |
+
- 0 for tokens that are **masked**.
|
829 |
+
|
830 |
+
[What are attention masks?](../glossary#attention-mask)
|
831 |
+
|
832 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
833 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
834 |
+
|
835 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
836 |
+
`past_key_values`).
|
837 |
+
|
838 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
839 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
840 |
+
information on the default strategy.
|
841 |
+
|
842 |
+
- 1 indicates the head is **not masked**,
|
843 |
+
- 0 indicates the head is **masked**.
|
844 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
845 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
846 |
+
config.n_positions - 1]`.
|
847 |
+
|
848 |
+
[What are position IDs?](../glossary#position-ids)
|
849 |
+
past_key_values (`VariableCache`, *optional*):
|
850 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
851 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
852 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
853 |
+
|
854 |
+
If passed to the forward function, past_key_values must be a VariableCache object (see imports).
|
855 |
+
For generation purposes, this is already handled inside model.generate().
|
856 |
+
|
857 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
858 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
859 |
+
of shape `(batch_size, sequence_length)`.
|
860 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
861 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
862 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
863 |
+
model's internal embedding lookup matrix.
|
864 |
+
use_cache (`bool`, *optional*):
|
865 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
866 |
+
`past_key_values`).
|
867 |
+
output_attentions (`bool`, *optional*):
|
868 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
869 |
+
tensors for more detail.
|
870 |
+
output_hidden_states (`bool`, *optional*):
|
871 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
872 |
+
more detail.
|
873 |
+
return_dict (`bool`, *optional*):
|
874 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
875 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
876 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
877 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
878 |
+
the complete sequence length.
|
879 |
+
"""
|
880 |
+
|
881 |
+
|
882 |
+
@add_start_docstrings(
|
883 |
+
"The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
|
884 |
+
DECILM_START_DOCSTRING,
|
885 |
+
)
|
886 |
+
class DeciLMModel(DeciLMPreTrainedModel):
|
887 |
+
"""
|
888 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeciLMDecoderLayer`]
|
889 |
+
|
890 |
+
Args:
|
891 |
+
config: DeciLMConfig
|
892 |
+
"""
|
893 |
+
|
894 |
+
def __init__(self, config: DeciLMConfig):
|
895 |
+
super().__init__(config)
|
896 |
+
self.padding_idx = config.pad_token_id
|
897 |
+
self.vocab_size = config.vocab_size
|
898 |
+
|
899 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
900 |
+
self.layers = nn.ModuleList(
|
901 |
+
[DeciLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
902 |
+
)
|
903 |
+
self.norm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
904 |
+
self.rotary_emb = DeciLMRotaryEmbedding(config=config)
|
905 |
+
self.gradient_checkpointing = False
|
906 |
+
|
907 |
+
# Initialize weights and apply final processing
|
908 |
+
self.post_init()
|
909 |
+
|
910 |
+
def get_input_embeddings(self):
|
911 |
+
return self.embed_tokens
|
912 |
+
|
913 |
+
def set_input_embeddings(self, value):
|
914 |
+
self.embed_tokens = value
|
915 |
+
|
916 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
917 |
+
def forward(
|
918 |
+
self,
|
919 |
+
input_ids: torch.LongTensor = None,
|
920 |
+
attention_mask: Optional[torch.Tensor] = None,
|
921 |
+
position_ids: Optional[torch.LongTensor] = None,
|
922 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
923 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
924 |
+
use_cache: Optional[bool] = None,
|
925 |
+
output_attentions: Optional[bool] = None,
|
926 |
+
output_hidden_states: Optional[bool] = None,
|
927 |
+
return_dict: Optional[bool] = None,
|
928 |
+
cache_position: Optional[torch.LongTensor] = None,
|
929 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
930 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
931 |
+
output_hidden_states = (
|
932 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
933 |
+
)
|
934 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
935 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
936 |
+
|
937 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
938 |
+
raise ValueError(
|
939 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
940 |
+
)
|
941 |
+
|
942 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
943 |
+
logger.warning_once(
|
944 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
945 |
+
)
|
946 |
+
use_cache = False
|
947 |
+
|
948 |
+
if inputs_embeds is None:
|
949 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
950 |
+
|
951 |
+
is_legacy_cache_format = (past_key_values is not None) and not isinstance(past_key_values, Cache)
|
952 |
+
if is_legacy_cache_format:
|
953 |
+
raise NotImplementedError("DeciLMModel does not support legacy cache format, please use a newer "
|
954 |
+
"transformers version or use VariableCache explicitly (see import in this file).")
|
955 |
+
|
956 |
+
if cache_position is None:
|
957 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
958 |
+
cache_position = torch.arange(
|
959 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
960 |
+
)
|
961 |
+
if position_ids is None:
|
962 |
+
position_ids = cache_position.unsqueeze(0)
|
963 |
+
|
964 |
+
causal_mask = self._update_causal_mask(
|
965 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
966 |
+
)
|
967 |
+
hidden_states = inputs_embeds
|
968 |
+
|
969 |
+
# create position embeddings to be shared across the decoder layers
|
970 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
971 |
+
|
972 |
+
# decoder layers
|
973 |
+
all_hidden_states = () if output_hidden_states else None
|
974 |
+
all_self_attns = () if output_attentions else None
|
975 |
+
next_decoder_cache = None
|
976 |
+
|
977 |
+
for decoder_layer in self.layers:
|
978 |
+
if output_hidden_states:
|
979 |
+
all_hidden_states += (hidden_states,)
|
980 |
+
|
981 |
+
if self.gradient_checkpointing and self.training:
|
982 |
+
layer_outputs = self._gradient_checkpointing_func(
|
983 |
+
decoder_layer.__call__,
|
984 |
+
hidden_states,
|
985 |
+
causal_mask,
|
986 |
+
position_ids,
|
987 |
+
past_key_values,
|
988 |
+
output_attentions,
|
989 |
+
use_cache,
|
990 |
+
cache_position,
|
991 |
+
position_embeddings,
|
992 |
+
)
|
993 |
+
else:
|
994 |
+
layer_outputs = decoder_layer(
|
995 |
+
hidden_states,
|
996 |
+
attention_mask=causal_mask,
|
997 |
+
position_ids=position_ids,
|
998 |
+
past_key_value=past_key_values,
|
999 |
+
output_attentions=output_attentions,
|
1000 |
+
use_cache=use_cache,
|
1001 |
+
cache_position=cache_position,
|
1002 |
+
position_embeddings=position_embeddings,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
hidden_states = layer_outputs[0]
|
1006 |
+
|
1007 |
+
if use_cache:
|
1008 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1009 |
+
|
1010 |
+
if output_attentions:
|
1011 |
+
all_self_attns += (layer_outputs[1],)
|
1012 |
+
|
1013 |
+
hidden_states = self.norm(hidden_states)
|
1014 |
+
|
1015 |
+
# add hidden states from the last decoder layer
|
1016 |
+
if output_hidden_states:
|
1017 |
+
all_hidden_states += (hidden_states,)
|
1018 |
+
|
1019 |
+
next_cache = next_decoder_cache if use_cache else None
|
1020 |
+
|
1021 |
+
if not return_dict:
|
1022 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1023 |
+
return BaseModelOutputWithPast(
|
1024 |
+
last_hidden_state=hidden_states,
|
1025 |
+
past_key_values=next_cache,
|
1026 |
+
hidden_states=all_hidden_states,
|
1027 |
+
attentions=all_self_attns,
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
def _update_causal_mask(
|
1031 |
+
self,
|
1032 |
+
attention_mask: torch.Tensor,
|
1033 |
+
input_tensor: torch.Tensor,
|
1034 |
+
cache_position: torch.Tensor,
|
1035 |
+
past_key_values: Cache,
|
1036 |
+
output_attentions: bool,
|
1037 |
+
):
|
1038 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1039 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1040 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1041 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1042 |
+
|
1043 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1044 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1045 |
+
return attention_mask
|
1046 |
+
return None
|
1047 |
+
|
1048 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1049 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1050 |
+
# to infer the attention mask.
|
1051 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1052 |
+
assert not isinstance(past_key_values, StaticCache), "DeciLM does not support StaticCache"
|
1053 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1054 |
+
|
1055 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1056 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
1057 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1058 |
+
attention_mask,
|
1059 |
+
inputs_embeds=input_tensor,
|
1060 |
+
past_key_values_length=past_seen_tokens,
|
1061 |
+
is_training=self.training,
|
1062 |
+
) and all([not layer.is_sliding for layer in self.layers]):
|
1063 |
+
return None
|
1064 |
+
|
1065 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1066 |
+
min_dtype = torch.finfo(dtype).min
|
1067 |
+
sequence_length = input_tensor.shape[1]
|
1068 |
+
if using_static_cache:
|
1069 |
+
target_length = past_key_values.get_max_length()
|
1070 |
+
else:
|
1071 |
+
target_length = (
|
1072 |
+
attention_mask.shape[-1]
|
1073 |
+
if isinstance(attention_mask, torch.Tensor)
|
1074 |
+
else past_seen_tokens + sequence_length + 1
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
1078 |
+
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1079 |
+
attention_mask,
|
1080 |
+
sequence_length=sequence_length,
|
1081 |
+
target_length=target_length,
|
1082 |
+
dtype=dtype,
|
1083 |
+
device=device,
|
1084 |
+
min_dtype=min_dtype,
|
1085 |
+
cache_position=cache_position,
|
1086 |
+
batch_size=input_tensor.shape[0],
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
if (
|
1090 |
+
self.config._attn_implementation == "sdpa"
|
1091 |
+
and attention_mask is not None
|
1092 |
+
and attention_mask.device.type == "cuda"
|
1093 |
+
and not output_attentions
|
1094 |
+
):
|
1095 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1096 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1097 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1098 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1099 |
+
|
1100 |
+
return causal_mask
|
1101 |
+
|
1102 |
+
|
1103 |
+
class DeciLMForCausalLM(DeciLMPreTrainedModel, GenerationMixin):
|
1104 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1105 |
+
|
1106 |
+
def __init__(self, config):
|
1107 |
+
super().__init__(config)
|
1108 |
+
self.model = DeciLMModel(config)
|
1109 |
+
self.vocab_size = config.vocab_size
|
1110 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1111 |
+
|
1112 |
+
# Initialize weights and apply final processing
|
1113 |
+
self.post_init()
|
1114 |
+
|
1115 |
+
def get_input_embeddings(self):
|
1116 |
+
return self.model.embed_tokens
|
1117 |
+
|
1118 |
+
def set_input_embeddings(self, value):
|
1119 |
+
self.model.embed_tokens = value
|
1120 |
+
|
1121 |
+
def get_output_embeddings(self):
|
1122 |
+
return self.lm_head
|
1123 |
+
|
1124 |
+
def set_output_embeddings(self, new_embeddings):
|
1125 |
+
self.lm_head = new_embeddings
|
1126 |
+
|
1127 |
+
def set_decoder(self, decoder):
|
1128 |
+
self.model = decoder
|
1129 |
+
|
1130 |
+
def get_decoder(self):
|
1131 |
+
return self.model
|
1132 |
+
|
1133 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
1134 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1135 |
+
def forward(
|
1136 |
+
self,
|
1137 |
+
input_ids: torch.LongTensor = None,
|
1138 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1139 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1140 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1141 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1142 |
+
labels: Optional[torch.LongTensor] = None,
|
1143 |
+
use_cache: Optional[bool] = None,
|
1144 |
+
output_attentions: Optional[bool] = None,
|
1145 |
+
output_hidden_states: Optional[bool] = None,
|
1146 |
+
return_dict: Optional[bool] = None,
|
1147 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1148 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1149 |
+
r"""
|
1150 |
+
Args:
|
1151 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1152 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1153 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1154 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1155 |
+
|
1156 |
+
Return:
|
1157 |
+
"""
|
1158 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1159 |
+
output_hidden_states = (
|
1160 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1161 |
+
)
|
1162 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1163 |
+
|
1164 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1165 |
+
outputs = self.model(
|
1166 |
+
input_ids=input_ids,
|
1167 |
+
attention_mask=attention_mask,
|
1168 |
+
position_ids=position_ids,
|
1169 |
+
past_key_values=past_key_values,
|
1170 |
+
inputs_embeds=inputs_embeds,
|
1171 |
+
use_cache=use_cache,
|
1172 |
+
output_attentions=output_attentions,
|
1173 |
+
output_hidden_states=output_hidden_states,
|
1174 |
+
return_dict=return_dict,
|
1175 |
+
cache_position=cache_position,
|
1176 |
+
)
|
1177 |
+
|
1178 |
+
hidden_states = outputs[0]
|
1179 |
+
if self.config.pretraining_tp > 1:
|
1180 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1181 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1182 |
+
logits = torch.cat(logits, dim=-1)
|
1183 |
+
else:
|
1184 |
+
logits = self.lm_head(hidden_states)
|
1185 |
+
logits = logits.float()
|
1186 |
+
|
1187 |
+
loss = None
|
1188 |
+
if labels is not None:
|
1189 |
+
# Shift so that tokens < n predict n
|
1190 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1191 |
+
shift_labels = labels[..., 1:].contiguous()
|
1192 |
+
# Flatten the tokens
|
1193 |
+
loss_fct = CrossEntropyLoss()
|
1194 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1195 |
+
shift_labels = shift_labels.view(-1)
|
1196 |
+
# Enable model parallelism
|
1197 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1198 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1199 |
+
|
1200 |
+
if not return_dict:
|
1201 |
+
output = (logits,) + outputs[1:]
|
1202 |
+
return (loss,) + output if loss is not None else output
|
1203 |
+
|
1204 |
+
return CausalLMOutputWithPast(
|
1205 |
+
loss=loss,
|
1206 |
+
logits=logits,
|
1207 |
+
past_key_values=outputs.past_key_values,
|
1208 |
+
hidden_states=outputs.hidden_states,
|
1209 |
+
attentions=outputs.attentions,
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
def prepare_inputs_for_generation(
|
1213 |
+
self,
|
1214 |
+
input_ids,
|
1215 |
+
past_key_values=None,
|
1216 |
+
attention_mask=None,
|
1217 |
+
inputs_embeds=None,
|
1218 |
+
cache_position=None,
|
1219 |
+
position_ids=None,
|
1220 |
+
use_cache=True,
|
1221 |
+
**kwargs,
|
1222 |
+
):
|
1223 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1224 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1225 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1226 |
+
if past_key_values is not None:
|
1227 |
+
if inputs_embeds is not None: # Exception 1
|
1228 |
+
input_ids = input_ids[:, -cache_position.shape[0]:]
|
1229 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1230 |
+
input_ids = input_ids[:, cache_position]
|
1231 |
+
|
1232 |
+
if attention_mask is not None and position_ids is None:
|
1233 |
+
# create position_ids on the fly for batch generation
|
1234 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1235 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1236 |
+
if past_key_values:
|
1237 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
1238 |
+
|
1239 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
1240 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
1241 |
+
|
1242 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1243 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
1244 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
1245 |
+
else:
|
1246 |
+
# The clone here is for the same reason as for `position_ids`.
|
1247 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
1248 |
+
|
1249 |
+
assert not isinstance(past_key_values, StaticCache), "DeciLM does not support StaticCache"
|
1250 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
1251 |
+
if model_inputs["inputs_embeds"] is not None:
|
1252 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
1253 |
+
device = model_inputs["inputs_embeds"].device
|
1254 |
+
else:
|
1255 |
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
1256 |
+
device = model_inputs["input_ids"].device
|
1257 |
+
|
1258 |
+
dtype = self.lm_head.weight.dtype
|
1259 |
+
min_dtype = torch.finfo(dtype).min
|
1260 |
+
|
1261 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1262 |
+
attention_mask,
|
1263 |
+
sequence_length=sequence_length,
|
1264 |
+
target_length=past_key_values.get_max_length(),
|
1265 |
+
dtype=dtype,
|
1266 |
+
device=device,
|
1267 |
+
min_dtype=min_dtype,
|
1268 |
+
cache_position=cache_position,
|
1269 |
+
batch_size=batch_size,
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
model_inputs.update(
|
1273 |
+
{
|
1274 |
+
"position_ids": position_ids,
|
1275 |
+
"cache_position": cache_position,
|
1276 |
+
"past_key_values": past_key_values,
|
1277 |
+
"use_cache": use_cache,
|
1278 |
+
"attention_mask": attention_mask,
|
1279 |
+
}
|
1280 |
+
)
|
1281 |
+
return model_inputs
|
1282 |
+
|
1283 |
+
def _maybe_initialize_input_ids_for_generation(
|
1284 |
+
self,
|
1285 |
+
inputs: Optional[torch.Tensor] = None,
|
1286 |
+
bos_token_id: Optional[torch.Tensor] = None,
|
1287 |
+
model_kwargs: Optional[dict[str, torch.Tensor]] = None,
|
1288 |
+
) -> torch.LongTensor:
|
1289 |
+
"""
|
1290 |
+
Patching hf bug that creates wrong cache length if only inputs_embeds are passed to the model
|
1291 |
+
"""
|
1292 |
+
input_ids = super()._maybe_initialize_input_ids_for_generation(
|
1293 |
+
inputs=inputs, bos_token_id=bos_token_id, model_kwargs=model_kwargs)
|
1294 |
+
if (
|
1295 |
+
"inputs_embeds" in model_kwargs
|
1296 |
+
and input_ids is not None
|
1297 |
+
and input_ids.shape[1] == 0
|
1298 |
+
):
|
1299 |
+
batch_size, input_sequence_length = model_kwargs["inputs_embeds"].shape[:2]
|
1300 |
+
input_ids = torch.zeros((batch_size, input_sequence_length), dtype=torch.long, device=self.device)
|
1301 |
+
return input_ids
|
1302 |
+
|
1303 |
+
def generate(
|
1304 |
+
self,
|
1305 |
+
inputs: Optional[torch.Tensor] = None,
|
1306 |
+
*args,
|
1307 |
+
**kwargs,
|
1308 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
1309 |
+
"""
|
1310 |
+
Patching hf bug that creates wrong cache length if only inputs_embeds are passed to the model
|
1311 |
+
"""
|
1312 |
+
only_passed_inputs_embeds = (
|
1313 |
+
"inputs_embeds" in kwargs and
|
1314 |
+
"input_ids" not in kwargs and
|
1315 |
+
inputs is None
|
1316 |
+
)
|
1317 |
+
if only_passed_inputs_embeds:
|
1318 |
+
input_sequence_length = kwargs["inputs_embeds"].shape[1]
|
1319 |
+
|
1320 |
+
generation_output = super().generate(inputs=inputs, *args, **kwargs)
|
1321 |
+
|
1322 |
+
if only_passed_inputs_embeds and isinstance(generation_output, torch.Tensor):
|
1323 |
+
generation_output = generation_output[:, input_sequence_length:]
|
1324 |
+
|
1325 |
+
return generation_output
|
1326 |
+
|
1327 |
+
|
1328 |
+
@add_start_docstrings(
|
1329 |
+
"""
|
1330 |
+
The DeciLM Model transformer with a sequence classification head on top (linear layer).
|
1331 |
+
|
1332 |
+
[`DeciLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1333 |
+
(e.g. GPT-2) do.
|
1334 |
+
|
1335 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1336 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1337 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1338 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1339 |
+
each row of the batch).
|
1340 |
+
""",
|
1341 |
+
DECILM_START_DOCSTRING,
|
1342 |
+
)
|
1343 |
+
class DeciLMForSequenceClassification(DeciLMPreTrainedModel):
|
1344 |
+
def __init__(self, config):
|
1345 |
+
super().__init__(config)
|
1346 |
+
self.num_labels = config.num_labels
|
1347 |
+
self.model = DeciLMModel(config)
|
1348 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1349 |
+
|
1350 |
+
# Initialize weights and apply final processing
|
1351 |
+
self.post_init()
|
1352 |
+
|
1353 |
+
def get_input_embeddings(self):
|
1354 |
+
return self.model.embed_tokens
|
1355 |
+
|
1356 |
+
def set_input_embeddings(self, value):
|
1357 |
+
self.model.embed_tokens = value
|
1358 |
+
|
1359 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
1360 |
+
def forward(
|
1361 |
+
self,
|
1362 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1363 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1364 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1365 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1366 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1367 |
+
labels: Optional[torch.LongTensor] = None,
|
1368 |
+
use_cache: Optional[bool] = None,
|
1369 |
+
output_attentions: Optional[bool] = None,
|
1370 |
+
output_hidden_states: Optional[bool] = None,
|
1371 |
+
return_dict: Optional[bool] = None,
|
1372 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1373 |
+
r"""
|
1374 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1375 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1376 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1377 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1378 |
+
"""
|
1379 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1380 |
+
|
1381 |
+
transformer_outputs = self.model(
|
1382 |
+
input_ids,
|
1383 |
+
attention_mask=attention_mask,
|
1384 |
+
position_ids=position_ids,
|
1385 |
+
past_key_values=past_key_values,
|
1386 |
+
inputs_embeds=inputs_embeds,
|
1387 |
+
use_cache=use_cache,
|
1388 |
+
output_attentions=output_attentions,
|
1389 |
+
output_hidden_states=output_hidden_states,
|
1390 |
+
return_dict=return_dict,
|
1391 |
+
)
|
1392 |
+
hidden_states = transformer_outputs[0]
|
1393 |
+
logits = self.score(hidden_states)
|
1394 |
+
|
1395 |
+
if input_ids is not None:
|
1396 |
+
batch_size = input_ids.shape[0]
|
1397 |
+
else:
|
1398 |
+
batch_size = inputs_embeds.shape[0]
|
1399 |
+
|
1400 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1401 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1402 |
+
if self.config.pad_token_id is None:
|
1403 |
+
sequence_lengths = -1
|
1404 |
+
else:
|
1405 |
+
if input_ids is not None:
|
1406 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1407 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1408 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1409 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1410 |
+
else:
|
1411 |
+
sequence_lengths = -1
|
1412 |
+
|
1413 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1414 |
+
|
1415 |
+
loss = None
|
1416 |
+
if labels is not None:
|
1417 |
+
labels = labels.to(logits.device)
|
1418 |
+
if self.config.problem_type is None:
|
1419 |
+
if self.num_labels == 1:
|
1420 |
+
self.config.problem_type = "regression"
|
1421 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1422 |
+
self.config.problem_type = "single_label_classification"
|
1423 |
+
else:
|
1424 |
+
self.config.problem_type = "multi_label_classification"
|
1425 |
+
|
1426 |
+
if self.config.problem_type == "regression":
|
1427 |
+
loss_fct = MSELoss()
|
1428 |
+
if self.num_labels == 1:
|
1429 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1430 |
+
else:
|
1431 |
+
loss = loss_fct(pooled_logits, labels)
|
1432 |
+
elif self.config.problem_type == "single_label_classification":
|
1433 |
+
loss_fct = CrossEntropyLoss()
|
1434 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1435 |
+
elif self.config.problem_type == "multi_label_classification":
|
1436 |
+
loss_fct = BCEWithLogitsLoss()
|
1437 |
+
loss = loss_fct(pooled_logits, labels)
|
1438 |
+
if not return_dict:
|
1439 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1440 |
+
return ((loss,) + output) if loss is not None else output
|
1441 |
+
|
1442 |
+
return SequenceClassifierOutputWithPast(
|
1443 |
+
loss=loss,
|
1444 |
+
logits=pooled_logits,
|
1445 |
+
past_key_values=transformer_outputs.past_key_values,
|
1446 |
+
hidden_states=transformer_outputs.hidden_states,
|
1447 |
+
attentions=transformer_outputs.attentions,
|
1448 |
+
)
|
1449 |
+
|
1450 |
+
|
1451 |
+
@add_start_docstrings(
|
1452 |
+
"""
|
1453 |
+
The DeciLM Model transformer with a span classification head on top for extractive question-answering tasks like
|
1454 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1455 |
+
""",
|
1456 |
+
DECILM_START_DOCSTRING,
|
1457 |
+
)
|
1458 |
+
class DeciLMForQuestionAnswering(DeciLMPreTrainedModel):
|
1459 |
+
base_model_prefix = "transformer"
|
1460 |
+
|
1461 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->DeciLM
|
1462 |
+
def __init__(self, config):
|
1463 |
+
super().__init__(config)
|
1464 |
+
self.transformer = DeciLMModel(config)
|
1465 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1466 |
+
|
1467 |
+
# Initialize weights and apply final processing
|
1468 |
+
self.post_init()
|
1469 |
+
|
1470 |
+
def get_input_embeddings(self):
|
1471 |
+
return self.transformer.embed_tokens
|
1472 |
+
|
1473 |
+
def set_input_embeddings(self, value):
|
1474 |
+
self.transformer.embed_tokens = value
|
1475 |
+
|
1476 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
1477 |
+
def forward(
|
1478 |
+
self,
|
1479 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1480 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1481 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1482 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1483 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1484 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1485 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1486 |
+
output_attentions: Optional[bool] = None,
|
1487 |
+
output_hidden_states: Optional[bool] = None,
|
1488 |
+
return_dict: Optional[bool] = None,
|
1489 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1490 |
+
r"""
|
1491 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1492 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1493 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1494 |
+
are not taken into account for computing the loss.
|
1495 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1496 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1497 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1498 |
+
are not taken into account for computing the loss.
|
1499 |
+
"""
|
1500 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1501 |
+
|
1502 |
+
outputs = self.transformer(
|
1503 |
+
input_ids,
|
1504 |
+
attention_mask=attention_mask,
|
1505 |
+
position_ids=position_ids,
|
1506 |
+
past_key_values=past_key_values,
|
1507 |
+
inputs_embeds=inputs_embeds,
|
1508 |
+
output_attentions=output_attentions,
|
1509 |
+
output_hidden_states=output_hidden_states,
|
1510 |
+
return_dict=return_dict,
|
1511 |
+
)
|
1512 |
+
|
1513 |
+
sequence_output = outputs[0]
|
1514 |
+
|
1515 |
+
logits = self.qa_outputs(sequence_output)
|
1516 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1517 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1518 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1519 |
+
|
1520 |
+
total_loss = None
|
1521 |
+
if start_positions is not None and end_positions is not None:
|
1522 |
+
# If we are on multi-GPU, split add a dimension
|
1523 |
+
if len(start_positions.size()) > 1:
|
1524 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1525 |
+
if len(end_positions.size()) > 1:
|
1526 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1527 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1528 |
+
ignored_index = start_logits.size(1)
|
1529 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1530 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1531 |
+
|
1532 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1533 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1534 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1535 |
+
total_loss = (start_loss + end_loss) / 2
|
1536 |
+
|
1537 |
+
if not return_dict:
|
1538 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1539 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1540 |
+
|
1541 |
+
return QuestionAnsweringModelOutput(
|
1542 |
+
loss=total_loss,
|
1543 |
+
start_logits=start_logits,
|
1544 |
+
end_logits=end_logits,
|
1545 |
+
hidden_states=outputs.hidden_states,
|
1546 |
+
attentions=outputs.attentions,
|
1547 |
+
)
|
1548 |
+
|
1549 |
+
|
1550 |
+
@add_start_docstrings(
|
1551 |
+
"""
|
1552 |
+
The DeciLM Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1553 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1554 |
+
""",
|
1555 |
+
DECILM_START_DOCSTRING,
|
1556 |
+
)
|
1557 |
+
class DeciLMForTokenClassification(DeciLMPreTrainedModel):
|
1558 |
+
def __init__(self, config):
|
1559 |
+
super().__init__(config)
|
1560 |
+
self.num_labels = config.num_labels
|
1561 |
+
self.model = DeciLMModel(config)
|
1562 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1563 |
+
classifier_dropout = config.classifier_dropout
|
1564 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1565 |
+
classifier_dropout = config.hidden_dropout
|
1566 |
+
else:
|
1567 |
+
classifier_dropout = 0.1
|
1568 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1569 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1570 |
+
|
1571 |
+
# Initialize weights and apply final processing
|
1572 |
+
self.post_init()
|
1573 |
+
|
1574 |
+
def get_input_embeddings(self):
|
1575 |
+
return self.model.embed_tokens
|
1576 |
+
|
1577 |
+
def set_input_embeddings(self, value):
|
1578 |
+
self.model.embed_tokens = value
|
1579 |
+
|
1580 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
1581 |
+
def forward(
|
1582 |
+
self,
|
1583 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1584 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1585 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1586 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1587 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1588 |
+
labels: Optional[torch.LongTensor] = None,
|
1589 |
+
use_cache: Optional[bool] = None,
|
1590 |
+
output_attentions: Optional[bool] = None,
|
1591 |
+
output_hidden_states: Optional[bool] = None,
|
1592 |
+
return_dict: Optional[bool] = None,
|
1593 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1594 |
+
r"""
|
1595 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1596 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1597 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1598 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1599 |
+
"""
|
1600 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1601 |
+
|
1602 |
+
outputs = self.model(
|
1603 |
+
input_ids,
|
1604 |
+
attention_mask=attention_mask,
|
1605 |
+
position_ids=position_ids,
|
1606 |
+
past_key_values=past_key_values,
|
1607 |
+
inputs_embeds=inputs_embeds,
|
1608 |
+
use_cache=use_cache,
|
1609 |
+
output_attentions=output_attentions,
|
1610 |
+
output_hidden_states=output_hidden_states,
|
1611 |
+
return_dict=return_dict,
|
1612 |
+
)
|
1613 |
+
sequence_output = outputs[0]
|
1614 |
+
sequence_output = self.dropout(sequence_output)
|
1615 |
+
logits = self.score(sequence_output)
|
1616 |
+
|
1617 |
+
loss = None
|
1618 |
+
if labels is not None:
|
1619 |
+
loss_fct = CrossEntropyLoss()
|
1620 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1621 |
+
|
1622 |
+
if not return_dict:
|
1623 |
+
output = (logits,) + outputs[2:]
|
1624 |
+
return ((loss,) + output) if loss is not None else output
|
1625 |
+
|
1626 |
+
return TokenClassifierOutput(
|
1627 |
+
loss=loss,
|
1628 |
+
logits=logits,
|
1629 |
+
hidden_states=outputs.hidden_states,
|
1630 |
+
attentions=outputs.attentions,
|
1631 |
+
)
|
1632 |
+
|
1633 |
+
|
1634 |
+
########################################################################
|
1635 |
+
# DeciLM-specific code
|
1636 |
+
########################################################################
|
1637 |
+
|
1638 |
+
|
1639 |
+
def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
|
1640 |
+
# DeciLM-specific code
|
1641 |
+
intermediate_size = int(2 * ffn_mult * n_embd / 3)
|
1642 |
+
return _find_multiple(intermediate_size, 256)
|
1643 |
+
|
1644 |
+
|
1645 |
+
def _find_multiple(n: int, k: int) -> int:
|
1646 |
+
# DeciLM-specific code
|
1647 |
+
if n % k == 0:
|
1648 |
+
return n
|
1649 |
+
return n + k - (n % k)
|
1650 |
+
|
1651 |
+
|
1652 |
+
class DeciLMLinearMLP(nn.Module):
|
1653 |
+
# DeciLM-specific code
|
1654 |
+
def __init__(self,
|
1655 |
+
config: DeciLMConfig,
|
1656 |
+
):
|
1657 |
+
super().__init__()
|
1658 |
+
self.linear_mlp = nn.Linear(in_features=config.hidden_size,
|
1659 |
+
out_features=config.hidden_size,
|
1660 |
+
bias=False)
|
1661 |
+
|
1662 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1663 |
+
return self.linear_mlp.forward(x)
|
1664 |
+
|
1665 |
+
|
1666 |
+
class DeciLMLinearAttention(nn.Module):
|
1667 |
+
# DeciLM-specific code
|
1668 |
+
def __init__(self,
|
1669 |
+
config: DeciLMConfig,
|
1670 |
+
):
|
1671 |
+
super().__init__()
|
1672 |
+
self.linear_attn = nn.Linear(in_features=config.hidden_size,
|
1673 |
+
out_features=config.hidden_size,
|
1674 |
+
bias=False)
|
1675 |
+
|
1676 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1677 |
+
return self.linear_attn.forward(x)
|
1678 |
+
|
1679 |
+
|
1680 |
+
def sparsity_backward_hook(*args, **kwargs):
|
1681 |
+
raise NotImplementedError("No support for sparsity when training HF DeciLM (inference is ok though)")
|
nemo_common.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
nemo_model_config.yaml
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
restore_from_path: null
|
2 |
+
restore_from_ckpt: null
|
3 |
+
mcore_gpt: true
|
4 |
+
micro_batch_size: 1
|
5 |
+
global_batch_size: 288
|
6 |
+
tensor_model_parallel_size: 8
|
7 |
+
pipeline_model_parallel_size: 18
|
8 |
+
virtual_pipeline_model_parallel_size: null
|
9 |
+
encoder_seq_length: 17408
|
10 |
+
max_position_embeddings: 17408
|
11 |
+
num_layers: 162
|
12 |
+
hidden_size: 16384
|
13 |
+
ffn_hidden_size: 11008
|
14 |
+
num_attention_heads: 128
|
15 |
+
init_method_std: 0.02
|
16 |
+
use_scaled_init_method: true
|
17 |
+
hidden_dropout: 0.0
|
18 |
+
attention_dropout: 0.0
|
19 |
+
ffn_dropout: 0.0
|
20 |
+
kv_channels: null
|
21 |
+
apply_query_key_layer_scaling: true
|
22 |
+
normalization: rmsnorm
|
23 |
+
layernorm_epsilon: 1.0e-05
|
24 |
+
do_layer_norm_weight_decay: false
|
25 |
+
make_vocab_size_divisible_by: 128
|
26 |
+
pre_process: true
|
27 |
+
post_process: true
|
28 |
+
persist_layer_norm: true
|
29 |
+
bias: false
|
30 |
+
activation: fast-swiglu
|
31 |
+
headscale: false
|
32 |
+
transformer_block_type: pre_ln
|
33 |
+
openai_gelu: false
|
34 |
+
normalize_attention_scores: true
|
35 |
+
position_embedding_type: rope
|
36 |
+
rotary_percentage: 1.0
|
37 |
+
attention_type: multihead
|
38 |
+
share_embeddings_and_output_weights: false
|
39 |
+
overlap_p2p_comm: false
|
40 |
+
batch_p2p_comm: true
|
41 |
+
num_query_groups: 8
|
42 |
+
tokenizer:
|
43 |
+
library: huggingface
|
44 |
+
type: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
|
45 |
+
use_fast: true
|
46 |
+
native_amp_init_scale: 4294967296
|
47 |
+
native_amp_growth_interval: 1000
|
48 |
+
hysteresis: 2
|
49 |
+
fp32_residual_connection: false
|
50 |
+
fp16_lm_cross_entropy: false
|
51 |
+
megatron_amp_O2: true
|
52 |
+
grad_allreduce_chunk_size_mb: 125
|
53 |
+
grad_div_ar_fusion: true
|
54 |
+
gradient_accumulation_fusion: false
|
55 |
+
bias_activation_fusion: false
|
56 |
+
bias_dropout_add_fusion: false
|
57 |
+
masked_softmax_fusion: true
|
58 |
+
get_attention_mask_from_fusion: true
|
59 |
+
apply_rope_fusion: false
|
60 |
+
seed: 1234
|
61 |
+
resume_from_checkpoint: null
|
62 |
+
use_cpu_initialization: false
|
63 |
+
onnx_safe: false
|
64 |
+
apex_transformer_log_level: 30
|
65 |
+
gradient_as_bucket_view: true
|
66 |
+
sync_batch_comm: false
|
67 |
+
activations_checkpoint_granularity: full
|
68 |
+
activations_checkpoint_method: uniform
|
69 |
+
activations_checkpoint_num_layers: 1
|
70 |
+
num_micro_batches_with_partial_activation_checkpoints: null
|
71 |
+
activations_checkpoint_layers_per_pipeline: null
|
72 |
+
sequence_parallel: true
|
73 |
+
transformer_engine: true
|
74 |
+
fp8: false
|
75 |
+
fp8_e4m3: false
|
76 |
+
fp8_hybrid: true
|
77 |
+
fp8_margin: 0
|
78 |
+
fp8_interval: 1
|
79 |
+
fp8_amax_history_len: 1024
|
80 |
+
fp8_amax_compute_algo: max
|
81 |
+
reduce_amax: true
|
82 |
+
use_emha: false
|
83 |
+
data:
|
84 |
+
index_mapping_dir: null
|
85 |
+
data_impl: jsonl
|
86 |
+
splits_string: null
|
87 |
+
seq_length: 17408
|
88 |
+
skip_warmup: true
|
89 |
+
num_workers: 0
|
90 |
+
dataloader_type: single
|
91 |
+
reset_position_ids: false
|
92 |
+
reset_attention_mask: false
|
93 |
+
eod_mask_loss: false
|
94 |
+
validation_drop_last: true
|
95 |
+
no_seqlen_plus_one_input_tokens: false
|
96 |
+
pad_samples_to_global_batch_size: false
|
97 |
+
shuffle_documents: true
|
98 |
+
apply_chat_template: false
|
99 |
+
prompt_file: null
|
100 |
+
system_prompt_file: null
|
101 |
+
shuffle_train_data: false
|
102 |
+
system_prompt: detailed thinking off
|
103 |
+
data_prefix:
|
104 |
+
train:
|
105 |
+
- /lustre/fsw/portfolios/llmservice/users/jiaqiz/data/reinforce/hs2/hs2.multiturn.rl.sys12.train.jsonl
|
106 |
+
validation:
|
107 |
+
- /lustre/fsw/portfolios/llmservice/users/jiaqiz/data/reinforce/hs2/hs2.multiturn.rl.sys12.val.jsonl
|
108 |
+
test:
|
109 |
+
- /lustre/fsw/portfolios/llmservice/users/jiaqiz/data/reinforce/hs2/hs2.multiturn.rl.sys12.val.jsonl
|
110 |
+
nsys_profile:
|
111 |
+
enabled: false
|
112 |
+
start_step: 10
|
113 |
+
end_step: 10
|
114 |
+
ranks:
|
115 |
+
- 0
|
116 |
+
gen_shape: false
|
117 |
+
optim:
|
118 |
+
name: distributed_fused_adam
|
119 |
+
lr: 3.00001e-07
|
120 |
+
weight_decay: 0.1
|
121 |
+
betas:
|
122 |
+
- 0.9
|
123 |
+
- 0.98
|
124 |
+
sched:
|
125 |
+
name: CosineAnnealing
|
126 |
+
warmup_steps: 10
|
127 |
+
constant_steps: 1000
|
128 |
+
min_lr: 3.0e-07
|
129 |
+
max_steps: 3802
|
130 |
+
bucket_cap_mb: 200
|
131 |
+
overlap_grad_sync: false
|
132 |
+
overlap_param_sync: false
|
133 |
+
contiguous_grad_buffer: true
|
134 |
+
rotary_base: 500000.0
|
135 |
+
scale_positional_embedding: true
|
136 |
+
seq_len_interpolation_factor: null
|
137 |
+
heterogeneous_layers_config_path: /home/boryiings/lustre/aligner/253B/checkpoints/sft_step1800_nemo/NeMo/config.json
|
138 |
+
name: heterogeneous_gpt
|
139 |
+
precision: bf16
|
140 |
+
hf_model_name_or_configs_dir: /lustre/fs1/portfolios/llmservice/users/jiaqiz/results/253b-id-step14-diffrank-evelina-gpqa-scp116k-aops-llmjudge-prompt2-long-16klen-lr5e7-72nodes/checkpoints/HF/step21
|
141 |
+
grpo:
|
142 |
+
share_dir: /dev/shm/checkpoints_2248637
|
143 |
+
forward_micro_batch_size: 1
|
144 |
+
offload_adam_states: true
|
145 |
+
ratio_eps: 0.2
|
146 |
+
sampling_params:
|
147 |
+
use_greedy: false
|
148 |
+
temperature: 1
|
149 |
+
top_k: -1
|
150 |
+
top_p: 1.0
|
151 |
+
repetition_penalty: 1.0
|
152 |
+
add_BOS: false
|
153 |
+
all_probs: false
|
154 |
+
compute_logprob: false
|
155 |
+
end_strings:
|
156 |
+
- <|endoftext|>
|
157 |
+
- <extra_id_1>
|
158 |
+
length_params:
|
159 |
+
max_length: 16384
|
160 |
+
min_length: 1
|
161 |
+
generation_rollout_mbs: 16
|
162 |
+
trt_model_dir: /tmp/trt_llm_model
|
163 |
+
initial_policy_kl_penalty: 0.0001
|
164 |
+
inference_backend:
|
165 |
+
type: vllm
|
166 |
+
enable: true
|
167 |
+
seed: 1234
|
168 |
+
max_input_len: 1024
|
169 |
+
reshard: true
|
170 |
+
config:
|
171 |
+
trt_llm:
|
172 |
+
enable: false
|
173 |
+
model_type: llama
|
174 |
+
unload_engine_train: false
|
175 |
+
vllm:
|
176 |
+
enable: true
|
177 |
+
port: 4321
|
178 |
+
ip: cw-dfw-h100-001-262-012
|
179 |
+
trt_llm_pytorch:
|
180 |
+
enable: false
|
181 |
+
port: 4321
|
182 |
+
ip: localhost
|
183 |
+
peft:
|
184 |
+
peft_scheme: none
|
185 |
+
restore_from_path: null
|
186 |
+
restore_from_ckpt:
|
187 |
+
checkpoint_dir: null
|
188 |
+
checkpoint_name: null
|
189 |
+
lora_tuning:
|
190 |
+
target_modules:
|
191 |
+
- attention_qkv
|
192 |
+
adapter_dim: 32
|
193 |
+
adapter_dropout: 0.0
|
194 |
+
column_init_method: xavier
|
195 |
+
row_init_method: zero
|
196 |
+
layer_selection: null
|
197 |
+
weight_tying: false
|
198 |
+
position_embedding_strategy: null
|
199 |
+
context_parallel_size: 2
|
200 |
+
dist_ckpt_format: torch_dist
|
201 |
+
dist_ckpt_load_on_device: true
|
202 |
+
dist_ckpt_parallel_save: true
|
203 |
+
dist_ckpt_parallel_save_within_dp: false
|
204 |
+
dist_ckpt_parallel_load: false
|
205 |
+
dist_ckpt_torch_dist_multiproc: 2
|
206 |
+
dist_ckpt_assume_constant_structure: false
|
207 |
+
dist_ckpt_parallel_dist_opt: true
|
208 |
+
dist_ckpt_load_strictness: log_all
|
209 |
+
deallocate_pipeline_outputs: false
|
210 |
+
target: nemo_aligner.experimental.grpo.models.nlp.gpt.megatron_gpt_grpo_actor.MegatronGPTActorModel
|
211 |
+
nemo_version: 2.2.0rc0
|
quantization_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|eot_id|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
}
|
16 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
|
3 |
+
size 17209920
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2063 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_3|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_4|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_5|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_6|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_7|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_8|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_9|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_10|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_11|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_12|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_13|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_14|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_15|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_16|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_17|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_18|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_19|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_20|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_21|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_22|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_23|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_24|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_25|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_26|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_27|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_28|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_29|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_30|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_31|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_32|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_33|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_34|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_35|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_36|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_37|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_38|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_39|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_40|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_41|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_42|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_43|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_44|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_45|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_46|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_47|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_48|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_49|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_50|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_51|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_52|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_53|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_54|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_55|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_56|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_57|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_58|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_59|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_60|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_61|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_62|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_63|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_64|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_65|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_66|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_67|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_68|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_69|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_70|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_71|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_72|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_73|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_74|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_75|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_76|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_77|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_78|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_79|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_80|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_81|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_82|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_83|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_84|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_85|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_86|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_87|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_88|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_89|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_90|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_91|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_92|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_93|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_94|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_95|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_96|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_97|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_98|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_99|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_100|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_101|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_102|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_103|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_104|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_105|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_106|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_107|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_108|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_109|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_110|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_111|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_112|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_113|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_114|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_115|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_116|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_117|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_118|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_119|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_120|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_121|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_122|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_123|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_124|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_125|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_126|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_127|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_128|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_129|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_130|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_131|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_132|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_133|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_134|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_135|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_136|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_137|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_138|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_139|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_140|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_141|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_142|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_143|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_144|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_145|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_146|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_147|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_148|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_149|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_150|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_151|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_152|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_153|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_154|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_155|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_156|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_157|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_158|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_159|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_160|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_161|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_162|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_163|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_164|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_165|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_166|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_167|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_168|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_169|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_170|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_171|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_172|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_173|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_174|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_175|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_176|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_177|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_178|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_179|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_180|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_181|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_182|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_183|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_184|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_185|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_186|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_187|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_188|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_189|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_190|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_191|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_192|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_193|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_194|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_195|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_196|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_197|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_198|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_199|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_200|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_201|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_202|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_203|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_204|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_205|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_206|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_207|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_208|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_209|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_210|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_211|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_212|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_213|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_214|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_215|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_216|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_217|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_218|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_219|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_220|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_221|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_222|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_223|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_224|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_225|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_226|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_227|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_228|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_229|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_230|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_231|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_232|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_233|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_234|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_235|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_236|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_237|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_238|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_239|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_240|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_241|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_242|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_243|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_244|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_245|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_246|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_247|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"chat_template": "{{- bos_token }}{%- if messages[0]['role'] == 'system' %}{%- set system_message = messages[0]['content']|trim %}{%- set messages = messages[1:] %}{%- else %}{%- set system_message = \"detailed thinking on\" %}{%- endif %}{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}{{- system_message }}{{- \"<|eot_id|>\" }}{%- for message in messages %}{%- if message['role'] == 'assistant' and '</think>' in message['content'] %}{%- set content = message['content'].split('</think>')[-1].lstrip() %}{%- else %}{%- set content = message['content'] %}{%- endif %}{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n' + content | trim + '<|eot_id|>' }}{%- endfor %}{%- if add_generation_prompt %}{{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}{%- endif %}",
|
2054 |
+
"clean_up_tokenization_spaces": true,
|
2055 |
+
"eos_token": "<|eot_id|>",
|
2056 |
+
"extra_special_tokens": {},
|
2057 |
+
"model_input_names": [
|
2058 |
+
"input_ids",
|
2059 |
+
"attention_mask"
|
2060 |
+
],
|
2061 |
+
"model_max_length": 131072,
|
2062 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2063 |
+
}
|
tokenizer_name.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
meta-llama/Llama-3.1-405B-Instruct
|
training_flowchart.png
ADDED
![]() |
Git LFS Details
|
transformers_4_44_2__activations.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from packaging import version
|
20 |
+
from torch import Tensor, nn
|
21 |
+
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class PytorchGELUTanh(nn.Module):
|
29 |
+
"""
|
30 |
+
A fast C implementation of the tanh approximation of the GeLU activation function. See
|
31 |
+
https://arxiv.org/abs/1606.08415.
|
32 |
+
|
33 |
+
This implementation is equivalent to NewGELU and FastGELU but much faster. However, it is not an exact numerical
|
34 |
+
match due to rounding errors.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self):
|
38 |
+
super().__init__()
|
39 |
+
if version.parse(torch.__version__) < version.parse("1.12.0"):
|
40 |
+
raise ImportError(
|
41 |
+
f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use "
|
42 |
+
"PytorchGELUTanh. Please upgrade torch."
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, input: Tensor) -> Tensor:
|
46 |
+
return nn.functional.gelu(input, approximate="tanh")
|
47 |
+
|
48 |
+
|
49 |
+
class NewGELUActivation(nn.Module):
|
50 |
+
"""
|
51 |
+
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
|
52 |
+
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
53 |
+
"""
|
54 |
+
|
55 |
+
def forward(self, input: Tensor) -> Tensor:
|
56 |
+
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
|
57 |
+
|
58 |
+
|
59 |
+
class GELUActivation(nn.Module):
|
60 |
+
"""
|
61 |
+
Original Implementation of the GELU activation function in Google BERT repo when initially created. For
|
62 |
+
information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
|
63 |
+
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
|
64 |
+
Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(self, use_gelu_python: bool = False):
|
68 |
+
super().__init__()
|
69 |
+
if use_gelu_python:
|
70 |
+
self.act = self._gelu_python
|
71 |
+
else:
|
72 |
+
self.act = nn.functional.gelu
|
73 |
+
|
74 |
+
def _gelu_python(self, input: Tensor) -> Tensor:
|
75 |
+
return input * 0.5 * (1.0 + torch.erf(input / math.sqrt(2.0)))
|
76 |
+
|
77 |
+
def forward(self, input: Tensor) -> Tensor:
|
78 |
+
return self.act(input)
|
79 |
+
|
80 |
+
|
81 |
+
class FastGELUActivation(nn.Module):
|
82 |
+
"""
|
83 |
+
Applies GELU approximation that is slower than QuickGELU but more accurate. See: https://github.com/hendrycks/GELUs
|
84 |
+
"""
|
85 |
+
|
86 |
+
def forward(self, input: Tensor) -> Tensor:
|
87 |
+
return 0.5 * input * (1.0 + torch.tanh(input * 0.7978845608 * (1.0 + 0.044715 * input * input)))
|
88 |
+
|
89 |
+
|
90 |
+
class QuickGELUActivation(nn.Module):
|
91 |
+
"""
|
92 |
+
Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
|
93 |
+
"""
|
94 |
+
|
95 |
+
def forward(self, input: Tensor) -> Tensor:
|
96 |
+
return input * torch.sigmoid(1.702 * input)
|
97 |
+
|
98 |
+
|
99 |
+
class ClippedGELUActivation(nn.Module):
|
100 |
+
"""
|
101 |
+
Clip the range of possible GeLU outputs between [min, max]. This is especially useful for quantization purpose, as
|
102 |
+
it allows mapping negatives values in the GeLU spectrum. For more information on this trick, please refer to
|
103 |
+
https://arxiv.org/abs/2004.09602.
|
104 |
+
|
105 |
+
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
|
106 |
+
initially created.
|
107 |
+
|
108 |
+
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 +
|
109 |
+
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))). See https://arxiv.org/abs/1606.08415
|
110 |
+
"""
|
111 |
+
|
112 |
+
def __init__(self, min: float, max: float):
|
113 |
+
if min > max:
|
114 |
+
raise ValueError(f"min should be < max (got min: {min}, max: {max})")
|
115 |
+
|
116 |
+
super().__init__()
|
117 |
+
self.min = min
|
118 |
+
self.max = max
|
119 |
+
|
120 |
+
def forward(self, x: Tensor) -> Tensor:
|
121 |
+
return torch.clip(gelu(x), self.min, self.max)
|
122 |
+
|
123 |
+
|
124 |
+
class AccurateGELUActivation(nn.Module):
|
125 |
+
"""
|
126 |
+
Applies GELU approximation that is faster than default and more accurate than QuickGELU. See:
|
127 |
+
https://github.com/hendrycks/GELUs
|
128 |
+
|
129 |
+
Implemented along with MEGA (Moving Average Equipped Gated Attention)
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(self):
|
133 |
+
super().__init__()
|
134 |
+
self.precomputed_constant = math.sqrt(2 / math.pi)
|
135 |
+
|
136 |
+
def forward(self, input: Tensor) -> Tensor:
|
137 |
+
return 0.5 * input * (1 + torch.tanh(self.precomputed_constant * (input + 0.044715 * torch.pow(input, 3))))
|
138 |
+
|
139 |
+
|
140 |
+
class MishActivation(nn.Module):
|
141 |
+
"""
|
142 |
+
See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
|
143 |
+
visit the official repository for the paper: https://github.com/digantamisra98/Mish
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(self):
|
147 |
+
super().__init__()
|
148 |
+
if version.parse(torch.__version__) < version.parse("1.9.0"):
|
149 |
+
self.act = self._mish_python
|
150 |
+
else:
|
151 |
+
self.act = nn.functional.mish
|
152 |
+
|
153 |
+
def _mish_python(self, input: Tensor) -> Tensor:
|
154 |
+
return input * torch.tanh(nn.functional.softplus(input))
|
155 |
+
|
156 |
+
def forward(self, input: Tensor) -> Tensor:
|
157 |
+
return self.act(input)
|
158 |
+
|
159 |
+
|
160 |
+
class LinearActivation(nn.Module):
|
161 |
+
"""
|
162 |
+
Applies the linear activation function, i.e. forwarding input directly to output.
|
163 |
+
"""
|
164 |
+
|
165 |
+
def forward(self, input: Tensor) -> Tensor:
|
166 |
+
return input
|
167 |
+
|
168 |
+
|
169 |
+
class LaplaceActivation(nn.Module):
|
170 |
+
"""
|
171 |
+
Applies elementwise activation based on Laplace function, introduced in MEGA as an attention activation. See
|
172 |
+
https://arxiv.org/abs/2209.10655
|
173 |
+
|
174 |
+
Inspired by squared relu, but with bounded range and gradient for better stability
|
175 |
+
"""
|
176 |
+
|
177 |
+
def forward(self, input, mu=0.707107, sigma=0.282095):
|
178 |
+
input = (input - mu).div(sigma * math.sqrt(2.0))
|
179 |
+
return 0.5 * (1.0 + torch.erf(input))
|
180 |
+
|
181 |
+
|
182 |
+
class ReLUSquaredActivation(nn.Module):
|
183 |
+
"""
|
184 |
+
Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
|
185 |
+
"""
|
186 |
+
|
187 |
+
def forward(self, input):
|
188 |
+
relu_applied = nn.functional.relu(input)
|
189 |
+
squared = torch.square(relu_applied)
|
190 |
+
return squared
|
191 |
+
|
192 |
+
|
193 |
+
class ClassInstantier(OrderedDict):
|
194 |
+
def __getitem__(self, key):
|
195 |
+
content = super().__getitem__(key)
|
196 |
+
cls, kwargs = content if isinstance(content, tuple) else (content, {})
|
197 |
+
return cls(**kwargs)
|
198 |
+
|
199 |
+
|
200 |
+
ACT2CLS = {
|
201 |
+
"gelu": GELUActivation,
|
202 |
+
"gelu_10": (ClippedGELUActivation, {"min": -10, "max": 10}),
|
203 |
+
"gelu_fast": FastGELUActivation,
|
204 |
+
"gelu_new": NewGELUActivation,
|
205 |
+
"gelu_python": (GELUActivation, {"use_gelu_python": True}),
|
206 |
+
"gelu_pytorch_tanh": PytorchGELUTanh,
|
207 |
+
"gelu_accurate": AccurateGELUActivation,
|
208 |
+
"laplace": LaplaceActivation,
|
209 |
+
"leaky_relu": nn.LeakyReLU,
|
210 |
+
"linear": LinearActivation,
|
211 |
+
"mish": MishActivation,
|
212 |
+
"quick_gelu": QuickGELUActivation,
|
213 |
+
"relu": nn.ReLU,
|
214 |
+
"relu2": ReLUSquaredActivation,
|
215 |
+
"relu6": nn.ReLU6,
|
216 |
+
"sigmoid": nn.Sigmoid,
|
217 |
+
"silu": nn.SiLU,
|
218 |
+
"swish": nn.SiLU,
|
219 |
+
"tanh": nn.Tanh,
|
220 |
+
}
|
221 |
+
ACT2FN = ClassInstantier(ACT2CLS)
|
222 |
+
|
223 |
+
|
224 |
+
def get_activation(activation_string):
|
225 |
+
if activation_string in ACT2FN:
|
226 |
+
return ACT2FN[activation_string]
|
227 |
+
else:
|
228 |
+
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
|
229 |
+
|
230 |
+
|
231 |
+
# For backwards compatibility with: from activations import gelu_python
|
232 |
+
gelu_python = get_activation("gelu_python")
|
233 |
+
gelu_new = get_activation("gelu_new")
|
234 |
+
gelu = get_activation("gelu")
|
235 |
+
gelu_fast = get_activation("gelu_fast")
|
236 |
+
quick_gelu = get_activation("quick_gelu")
|
237 |
+
silu = get_activation("silu")
|
238 |
+
mish = get_activation("mish")
|
239 |
+
linear_act = get_activation("linear")
|
transformers_4_44_2__cache_utils.py
ADDED
@@ -0,0 +1,1347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import importlib.metadata
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from packaging import version
|
10 |
+
|
11 |
+
from transformers.configuration_utils import PretrainedConfig
|
12 |
+
from transformers.utils import is_torchdynamo_compiling, logging
|
13 |
+
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
class Cache(torch.nn.Module):
|
19 |
+
"""
|
20 |
+
Base, abstract class for all caches. The actual data structure is specific to each subclass.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self):
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
def update(
|
27 |
+
self,
|
28 |
+
key_states: torch.Tensor,
|
29 |
+
value_states: torch.Tensor,
|
30 |
+
layer_idx: int,
|
31 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
32 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
33 |
+
"""
|
34 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
35 |
+
|
36 |
+
Parameters:
|
37 |
+
key_states (`torch.Tensor`):
|
38 |
+
The new key states to cache.
|
39 |
+
value_states (`torch.Tensor`):
|
40 |
+
The new value states to cache.
|
41 |
+
layer_idx (`int`):
|
42 |
+
The index of the layer to cache the states for.
|
43 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
44 |
+
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
|
45 |
+
cache to be created.
|
46 |
+
|
47 |
+
Return:
|
48 |
+
A tuple containing the updated key and value states.
|
49 |
+
"""
|
50 |
+
raise NotImplementedError("Make sure to implement `update` in a subclass.")
|
51 |
+
|
52 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
53 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
54 |
+
# TODO: deprecate this function in favor of `cache_position`
|
55 |
+
raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")
|
56 |
+
|
57 |
+
def get_max_length(self) -> Optional[int]:
|
58 |
+
"""Returns the maximum sequence length of the cached states, if there is any."""
|
59 |
+
raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")
|
60 |
+
|
61 |
+
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
|
62 |
+
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
|
63 |
+
# Cache without size limit -> all cache is usable
|
64 |
+
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
|
65 |
+
# length, we will need to evict part of the cache (and thus not all cache is usable)
|
66 |
+
max_length = self.get_max_length()
|
67 |
+
previous_seq_length = self.get_seq_length(layer_idx)
|
68 |
+
if max_length is not None and previous_seq_length + new_seq_length > max_length:
|
69 |
+
return max_length - new_seq_length
|
70 |
+
return previous_seq_length
|
71 |
+
|
72 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
73 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
74 |
+
for layer_idx in range(len(self.key_cache)):
|
75 |
+
device = self.key_cache[layer_idx].device
|
76 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
77 |
+
device = self.value_cache[layer_idx].device
|
78 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
79 |
+
|
80 |
+
@property
|
81 |
+
def seen_tokens(self):
|
82 |
+
logger.warning_once(
|
83 |
+
"The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
|
84 |
+
"model input instead."
|
85 |
+
)
|
86 |
+
if hasattr(self, "_seen_tokens"):
|
87 |
+
return self._seen_tokens
|
88 |
+
else:
|
89 |
+
return None
|
90 |
+
|
91 |
+
|
92 |
+
@dataclass
|
93 |
+
class CacheConfig:
|
94 |
+
"""
|
95 |
+
Base class for cache configs
|
96 |
+
"""
|
97 |
+
|
98 |
+
cache_implementation: None
|
99 |
+
|
100 |
+
@classmethod
|
101 |
+
def from_dict(cls, config_dict, **kwargs):
|
102 |
+
"""
|
103 |
+
Constructs a CacheConfig instance from a dictionary of parameters.
|
104 |
+
Args:
|
105 |
+
config_dict (Dict[str, Any]): Dictionary containing configuration parameters.
|
106 |
+
**kwargs: Additional keyword arguments to override dictionary values.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
CacheConfig: Instance of CacheConfig constructed from the dictionary.
|
110 |
+
"""
|
111 |
+
config = cls(**config_dict)
|
112 |
+
to_remove = []
|
113 |
+
for key, value in kwargs.items():
|
114 |
+
if hasattr(config, key):
|
115 |
+
setattr(config, key, value)
|
116 |
+
to_remove.append(key)
|
117 |
+
for key in to_remove:
|
118 |
+
kwargs.pop(key, None)
|
119 |
+
return config
|
120 |
+
|
121 |
+
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_json_file
|
122 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
|
123 |
+
"""
|
124 |
+
Save this instance to a JSON file.
|
125 |
+
|
126 |
+
Args:
|
127 |
+
json_file_path (`str` or `os.PathLike`):
|
128 |
+
Path to the JSON file in which this configuration instance's parameters will be saved.
|
129 |
+
use_diff (`bool`, *optional*, defaults to `True`):
|
130 |
+
If set to `True`, only the difference between the config instance and the default
|
131 |
+
`QuantizationConfig()` is serialized to JSON file.
|
132 |
+
"""
|
133 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
134 |
+
config_dict = self.to_dict()
|
135 |
+
json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
136 |
+
|
137 |
+
writer.write(json_string)
|
138 |
+
|
139 |
+
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_dict
|
140 |
+
def to_dict(self) -> Dict[str, Any]:
|
141 |
+
"""
|
142 |
+
Serializes this instance to a Python dictionary. Returns:
|
143 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
|
144 |
+
"""
|
145 |
+
return copy.deepcopy(self.__dict__)
|
146 |
+
|
147 |
+
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__iter__
|
148 |
+
def __iter__(self):
|
149 |
+
"""allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin"""
|
150 |
+
for attr, value in copy.deepcopy(self.__dict__).items():
|
151 |
+
yield attr, value
|
152 |
+
|
153 |
+
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__repr__
|
154 |
+
def __repr__(self):
|
155 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
156 |
+
|
157 |
+
def to_json_string(self):
|
158 |
+
"""
|
159 |
+
Serializes this instance to a JSON formatted string.
|
160 |
+
Returns:
|
161 |
+
str: JSON formatted string representing the configuration instance.
|
162 |
+
"""
|
163 |
+
return json.dumps(self.__dict__, indent=2) + "\n"
|
164 |
+
|
165 |
+
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.update
|
166 |
+
def update(self, **kwargs):
|
167 |
+
"""
|
168 |
+
Updates attributes of this class instance with attributes from `kwargs` if they match existing attributes,
|
169 |
+
returning all the unused kwargs.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
kwargs (`Dict[str, Any]`):
|
173 |
+
Dictionary of attributes to tentatively update this class.
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
`Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
|
177 |
+
"""
|
178 |
+
to_remove = []
|
179 |
+
for key, value in kwargs.items():
|
180 |
+
if hasattr(self, key):
|
181 |
+
setattr(self, key, value)
|
182 |
+
to_remove.append(key)
|
183 |
+
|
184 |
+
# Remove all the attributes that were updated, without modifying the input dict
|
185 |
+
unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
|
186 |
+
return unused_kwargs
|
187 |
+
|
188 |
+
|
189 |
+
class DynamicCache(Cache):
|
190 |
+
"""
|
191 |
+
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
|
192 |
+
|
193 |
+
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
194 |
+
`[batch_size, num_heads, seq_len, head_dim]`.
|
195 |
+
|
196 |
+
Example:
|
197 |
+
|
198 |
+
```python
|
199 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
200 |
+
|
201 |
+
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
202 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
203 |
+
|
204 |
+
>>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
|
205 |
+
|
206 |
+
>>> # Prepare a cache class and pass it to model's forward
|
207 |
+
>>> past_key_values = DynamicCache()
|
208 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
209 |
+
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
|
210 |
+
```
|
211 |
+
"""
|
212 |
+
|
213 |
+
def __init__(self) -> None:
|
214 |
+
super().__init__()
|
215 |
+
self.key_cache: List[torch.Tensor] = []
|
216 |
+
self.value_cache: List[torch.Tensor] = []
|
217 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
218 |
+
|
219 |
+
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
220 |
+
"""
|
221 |
+
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
222 |
+
sequence length.
|
223 |
+
"""
|
224 |
+
if layer_idx < len(self):
|
225 |
+
return (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
226 |
+
else:
|
227 |
+
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
228 |
+
|
229 |
+
def __iter__(self):
|
230 |
+
"""
|
231 |
+
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
|
232 |
+
keys and values
|
233 |
+
"""
|
234 |
+
for layer_idx in range(len(self)):
|
235 |
+
yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
236 |
+
|
237 |
+
def __len__(self):
|
238 |
+
"""
|
239 |
+
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
240 |
+
to the number of layers in the model.
|
241 |
+
"""
|
242 |
+
return len(self.key_cache)
|
243 |
+
|
244 |
+
def update(
|
245 |
+
self,
|
246 |
+
key_states: torch.Tensor,
|
247 |
+
value_states: torch.Tensor,
|
248 |
+
layer_idx: int,
|
249 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
250 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
251 |
+
"""
|
252 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
253 |
+
|
254 |
+
Parameters:
|
255 |
+
key_states (`torch.Tensor`):
|
256 |
+
The new key states to cache.
|
257 |
+
value_states (`torch.Tensor`):
|
258 |
+
The new value states to cache.
|
259 |
+
layer_idx (`int`):
|
260 |
+
The index of the layer to cache the states for.
|
261 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
262 |
+
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
263 |
+
|
264 |
+
Return:
|
265 |
+
A tuple containing the updated key and value states.
|
266 |
+
"""
|
267 |
+
# Update the number of seen tokens
|
268 |
+
if layer_idx == 0:
|
269 |
+
self._seen_tokens += key_states.shape[-2]
|
270 |
+
|
271 |
+
# Update the cache
|
272 |
+
if len(self.key_cache) <= layer_idx:
|
273 |
+
self.key_cache.append(key_states)
|
274 |
+
self.value_cache.append(value_states)
|
275 |
+
else:
|
276 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
277 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
278 |
+
|
279 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
280 |
+
|
281 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
282 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
283 |
+
# TODO: deprecate this function in favor of `cache_position`
|
284 |
+
if len(self.key_cache) <= layer_idx:
|
285 |
+
return 0
|
286 |
+
return self.key_cache[layer_idx].shape[-2]
|
287 |
+
|
288 |
+
def get_max_length(self) -> Optional[int]:
|
289 |
+
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
290 |
+
return None
|
291 |
+
|
292 |
+
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
293 |
+
"""Converts the `DynamicCache` instance into the its equivalent in the legacy cache format. Used for
|
294 |
+
backward compatibility."""
|
295 |
+
legacy_cache = ()
|
296 |
+
for layer_idx in range(len(self)):
|
297 |
+
legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
|
298 |
+
return legacy_cache
|
299 |
+
|
300 |
+
@classmethod
|
301 |
+
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
|
302 |
+
"""Converts a cache in the legacy cache format into an equivalent `DynamicCache`. Used for
|
303 |
+
backward compatibility."""
|
304 |
+
cache = cls()
|
305 |
+
if past_key_values is not None:
|
306 |
+
for layer_idx in range(len(past_key_values)):
|
307 |
+
key_states, value_states = past_key_values[layer_idx]
|
308 |
+
cache.update(key_states, value_states, layer_idx)
|
309 |
+
return cache
|
310 |
+
|
311 |
+
def crop(self, max_length: int):
|
312 |
+
"""Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be
|
313 |
+
negative to remove `max_length` tokens. This is used in assisted decoding and contrastive search."""
|
314 |
+
# In case it is negative
|
315 |
+
if max_length < 0:
|
316 |
+
max_length = self.get_seq_length() - abs(max_length)
|
317 |
+
|
318 |
+
if self.get_seq_length() <= max_length:
|
319 |
+
return
|
320 |
+
|
321 |
+
self._seen_tokens = max_length
|
322 |
+
for idx in range(len(self.key_cache)):
|
323 |
+
self.key_cache[idx] = self.key_cache[idx][..., :max_length, :]
|
324 |
+
self.value_cache[idx] = self.value_cache[idx][..., :max_length, :]
|
325 |
+
|
326 |
+
def batch_split(self, full_batch_size: int, split_size: int) -> List["DynamicCache"]:
|
327 |
+
"""Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
|
328 |
+
`_split_model_inputs()` in `generation.utils`"""
|
329 |
+
out = []
|
330 |
+
for i in range(0, full_batch_size, split_size):
|
331 |
+
current_split = DynamicCache()
|
332 |
+
current_split._seen_tokens = self._seen_tokens
|
333 |
+
current_split.key_cache = [tensor[i : i + split_size] for tensor in self.key_cache]
|
334 |
+
current_split.value_cache = [tensor[i : i + split_size] for tensor in self.value_cache]
|
335 |
+
out.append(current_split)
|
336 |
+
return out
|
337 |
+
|
338 |
+
@classmethod
|
339 |
+
def from_batch_splits(cls, splits: List["DynamicCache"]) -> "DynamicCache":
|
340 |
+
"""This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
|
341 |
+
`generation.utils`"""
|
342 |
+
cache = cls()
|
343 |
+
for idx in range(len(splits[0])):
|
344 |
+
layer_keys = torch.cat([current.key_cache[idx] for current in splits], dim=0)
|
345 |
+
layer_values = torch.cat([current.value_cache[idx] for current in splits], dim=0)
|
346 |
+
cache.update(layer_keys, layer_values, idx)
|
347 |
+
return cache
|
348 |
+
|
349 |
+
def batch_repeat_interleave(self, repeats: int):
|
350 |
+
"""Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
|
351 |
+
for layer_idx in range(len(self)):
|
352 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].repeat_interleave(repeats, dim=0)
|
353 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].repeat_interleave(repeats, dim=0)
|
354 |
+
|
355 |
+
def batch_select_indices(self, indices: torch.Tensor):
|
356 |
+
"""Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
|
357 |
+
for layer_idx in range(len(self)):
|
358 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx][indices, ...]
|
359 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx][indices, ...]
|
360 |
+
|
361 |
+
|
362 |
+
class OffloadedCache(DynamicCache):
|
363 |
+
"""
|
364 |
+
A drop-in replacement for DynamicCache that conserves GPU memory at the expense of more CPU memory.
|
365 |
+
Useful for generating from models with very long context.
|
366 |
+
|
367 |
+
In addition to the default CUDA stream, where all forward() computations happen,
|
368 |
+
this class uses another stream, the prefetch stream, which it creates itself.
|
369 |
+
Since scheduling of operations on separate streams happens independently, this class uses
|
370 |
+
the prefetch stream to asynchronously prefetch the KV cache of layer k+1 when layer k is executing.
|
371 |
+
The movement of the layer k-1 cache to the CPU is handled by the default stream as a simple way to
|
372 |
+
ensure the eviction is scheduled after all computations on that cache are finished.
|
373 |
+
"""
|
374 |
+
|
375 |
+
def __init__(self) -> None:
|
376 |
+
if not torch.cuda.is_available():
|
377 |
+
raise RuntimeError("OffloadedCache can only be used with a GPU")
|
378 |
+
super().__init__()
|
379 |
+
self.original_device = []
|
380 |
+
self.prefetch_stream = torch.cuda.Stream()
|
381 |
+
self.beam_idx = None # used to delay beam search operations
|
382 |
+
|
383 |
+
def prefetch_layer(self, layer_idx: int):
|
384 |
+
"Starts prefetching the next layer cache"
|
385 |
+
if layer_idx < len(self):
|
386 |
+
with torch.cuda.stream(self.prefetch_stream):
|
387 |
+
# Prefetch next layer tensors to GPU
|
388 |
+
device = self.original_device[layer_idx]
|
389 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device, non_blocking=True)
|
390 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device, non_blocking=True)
|
391 |
+
|
392 |
+
def evict_previous_layer(self, layer_idx: int):
|
393 |
+
"Moves the previous layer cache to the CPU"
|
394 |
+
if len(self) > 2:
|
395 |
+
# We do it on the default stream so it occurs after all earlier computations on these tensors are done
|
396 |
+
prev_layer_idx = (layer_idx - 1) % len(self)
|
397 |
+
self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True)
|
398 |
+
self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True)
|
399 |
+
|
400 |
+
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
401 |
+
"Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer."
|
402 |
+
if layer_idx < len(self):
|
403 |
+
# Evict the previous layer if necessary
|
404 |
+
torch.cuda.current_stream().synchronize()
|
405 |
+
self.evict_previous_layer(layer_idx)
|
406 |
+
# Load current layer cache to its original device if not already there
|
407 |
+
original_device = self.original_device[layer_idx]
|
408 |
+
self.prefetch_stream.synchronize()
|
409 |
+
key_tensor = self.key_cache[layer_idx]
|
410 |
+
value_tensor = self.value_cache[layer_idx]
|
411 |
+
# Now deal with beam search ops which were delayed
|
412 |
+
if self.beam_idx is not None:
|
413 |
+
self.beam_idx = self.beam_idx.to(original_device)
|
414 |
+
key_tensor = key_tensor.index_select(0, self.beam_idx)
|
415 |
+
value_tensor = value_tensor.index_select(0, self.beam_idx)
|
416 |
+
# Prefetch the next layer
|
417 |
+
self.prefetch_layer((layer_idx + 1) % len(self))
|
418 |
+
return (key_tensor, value_tensor)
|
419 |
+
else:
|
420 |
+
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
421 |
+
|
422 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
423 |
+
"""Saves the beam indices and reorders the cache when the tensor is back to its device."""
|
424 |
+
# We delay this operation until the tensors are back to their original
|
425 |
+
# device because performing torch.index_select on the CPU is very slow
|
426 |
+
del self.beam_idx
|
427 |
+
self.beam_idx = beam_idx.clone()
|
428 |
+
|
429 |
+
def update(
|
430 |
+
self,
|
431 |
+
key_states: torch.Tensor,
|
432 |
+
value_states: torch.Tensor,
|
433 |
+
layer_idx: int,
|
434 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
435 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
436 |
+
"""
|
437 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
438 |
+
Parameters:
|
439 |
+
key_states (`torch.Tensor`):
|
440 |
+
The new key states to cache.
|
441 |
+
value_states (`torch.Tensor`):
|
442 |
+
The new value states to cache.
|
443 |
+
layer_idx (`int`):
|
444 |
+
The index of the layer to cache the states for.
|
445 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
446 |
+
Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`.
|
447 |
+
Return:
|
448 |
+
A tuple containing the updated key and value states.
|
449 |
+
"""
|
450 |
+
# Update the number of seen tokens
|
451 |
+
if layer_idx == 0:
|
452 |
+
self._seen_tokens += key_states.shape[-2]
|
453 |
+
|
454 |
+
# Update the cache
|
455 |
+
if len(self.key_cache) <= layer_idx:
|
456 |
+
self.key_cache.append(key_states)
|
457 |
+
self.value_cache.append(value_states)
|
458 |
+
self.original_device.append(key_states.device)
|
459 |
+
self.evict_previous_layer(layer_idx)
|
460 |
+
else:
|
461 |
+
key_tensor, value_tensor = self[layer_idx]
|
462 |
+
self.key_cache[layer_idx] = torch.cat([key_tensor, key_states], dim=-2)
|
463 |
+
self.value_cache[layer_idx] = torch.cat([value_tensor, value_states], dim=-2)
|
464 |
+
|
465 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
466 |
+
|
467 |
+
# According to https://docs.python.org/3/library/exceptions.html#NotImplementedError
|
468 |
+
# if a method is not supposed to be supported in a subclass we should set it to None
|
469 |
+
from_legacy_cache = None
|
470 |
+
|
471 |
+
to_legacy_cache = None
|
472 |
+
|
473 |
+
|
474 |
+
class SinkCache(Cache):
|
475 |
+
"""
|
476 |
+
A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
|
477 |
+
generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
|
478 |
+
tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.
|
479 |
+
|
480 |
+
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
481 |
+
`[batch_size, num_heads, seq_len, head_dim]`.
|
482 |
+
|
483 |
+
Parameters:
|
484 |
+
window_length (`int`):
|
485 |
+
The length of the context window.
|
486 |
+
num_sink_tokens (`int`):
|
487 |
+
The number of sink tokens. See the original paper for more information.
|
488 |
+
|
489 |
+
Example:
|
490 |
+
|
491 |
+
```python
|
492 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache
|
493 |
+
|
494 |
+
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
495 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
496 |
+
|
497 |
+
>>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
|
498 |
+
|
499 |
+
>>> # Prepare a cache class and pass it to model's forward
|
500 |
+
>>> past_key_values = SinkCache(window_length=256, num_sink_tokens=4)
|
501 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
502 |
+
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
|
503 |
+
```
|
504 |
+
"""
|
505 |
+
|
506 |
+
def __init__(self, window_length: int, num_sink_tokens: int) -> None:
|
507 |
+
super().__init__()
|
508 |
+
self.key_cache: List[torch.Tensor] = []
|
509 |
+
self.value_cache: List[torch.Tensor] = []
|
510 |
+
self.window_length = window_length
|
511 |
+
self.num_sink_tokens = num_sink_tokens
|
512 |
+
self.cos_sin_rerotation_cache = {}
|
513 |
+
self._cos_cache = None
|
514 |
+
self._sin_cache = None
|
515 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
516 |
+
|
517 |
+
@staticmethod
|
518 |
+
def _rotate_half(x):
|
519 |
+
x1 = x[..., : x.shape[-1] // 2]
|
520 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
521 |
+
return torch.cat((-x2, x1), dim=-1)
|
522 |
+
|
523 |
+
def _apply_key_rotary_pos_emb(
|
524 |
+
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
525 |
+
) -> torch.Tensor:
|
526 |
+
rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
|
527 |
+
return rotated_key_states
|
528 |
+
|
529 |
+
def _get_rerotation_cos_sin(
|
530 |
+
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
531 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
532 |
+
if key_states.shape[-2] not in self.cos_sin_rerotation_cache:
|
533 |
+
# Upcast to float32 temporarily for better accuracy
|
534 |
+
cos = cos.to(torch.float32)
|
535 |
+
sin = sin.to(torch.float32)
|
536 |
+
|
537 |
+
# Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
|
538 |
+
original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
|
539 |
+
shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
|
540 |
+
original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
|
541 |
+
shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
|
542 |
+
rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
|
543 |
+
rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin
|
544 |
+
|
545 |
+
self.cos_sin_rerotation_cache[key_states.shape[-2]] = (
|
546 |
+
rerotation_cos.to(key_states.dtype).unsqueeze(0),
|
547 |
+
rerotation_sin.to(key_states.dtype).unsqueeze(0),
|
548 |
+
)
|
549 |
+
return self.cos_sin_rerotation_cache[key_states.shape[-2]]
|
550 |
+
|
551 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
552 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
553 |
+
# TODO: deprecate this function in favor of `cache_position`
|
554 |
+
# Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
|
555 |
+
if len(self.key_cache) <= layer_idx:
|
556 |
+
return 0
|
557 |
+
return self.key_cache[layer_idx].shape[-2]
|
558 |
+
|
559 |
+
def get_max_length(self) -> Optional[int]:
|
560 |
+
"""Returns the maximum sequence length of the cached states."""
|
561 |
+
return self.window_length
|
562 |
+
|
563 |
+
def update(
|
564 |
+
self,
|
565 |
+
key_states: torch.Tensor,
|
566 |
+
value_states: torch.Tensor,
|
567 |
+
layer_idx: int,
|
568 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
569 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
570 |
+
"""
|
571 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
572 |
+
|
573 |
+
Parameters:
|
574 |
+
key_states (`torch.Tensor`):
|
575 |
+
The new key states to cache.
|
576 |
+
value_states (`torch.Tensor`):
|
577 |
+
The new value states to cache.
|
578 |
+
layer_idx (`int`):
|
579 |
+
The index of the layer to cache the states for.
|
580 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
581 |
+
Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
|
582 |
+
`cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
|
583 |
+
rotation as the tokens are shifted.
|
584 |
+
|
585 |
+
Return:
|
586 |
+
A tuple containing the updated key and value states.
|
587 |
+
"""
|
588 |
+
# Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
|
589 |
+
# with partially rotated position embeddings, like Phi or Persimmon.
|
590 |
+
sin = cache_kwargs.get("sin")
|
591 |
+
cos = cache_kwargs.get("cos")
|
592 |
+
partial_rotation_size = cache_kwargs.get("partial_rotation_size")
|
593 |
+
using_rope = cos is not None and sin is not None
|
594 |
+
|
595 |
+
# Update the number of seen tokens
|
596 |
+
if layer_idx == 0:
|
597 |
+
self._seen_tokens += key_states.shape[-2]
|
598 |
+
|
599 |
+
# Update the sin/cos cache, which holds sin/cos values for all possible positions
|
600 |
+
if using_rope and layer_idx == 0:
|
601 |
+
# BC: some models still pass `sin`/`cos` with 2 dims. In those models, they are the full sin/cos. Remove
|
602 |
+
# after all RoPE models have a llama-like cache utilization.
|
603 |
+
if cos.dim() == 2:
|
604 |
+
self._cos_cache = cos
|
605 |
+
self._sin_cache = sin
|
606 |
+
else:
|
607 |
+
if self._cos_cache is None:
|
608 |
+
self._cos_cache = cos[0, ...]
|
609 |
+
self._sin_cache = sin[0, ...]
|
610 |
+
elif self._cos_cache.shape[0] < self.window_length:
|
611 |
+
self._cos_cache = torch.cat([self._cos_cache, cos[0, ...]], dim=0)
|
612 |
+
self._sin_cache = torch.cat([self._sin_cache, sin[0, ...]], dim=0)
|
613 |
+
|
614 |
+
# [bsz, num_heads, seq_len, head_dim]
|
615 |
+
if len(self.key_cache) <= layer_idx:
|
616 |
+
# Empty cache
|
617 |
+
self.key_cache.append(key_states)
|
618 |
+
self.value_cache.append(value_states)
|
619 |
+
|
620 |
+
elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
|
621 |
+
# Growing cache
|
622 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
623 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
624 |
+
|
625 |
+
else:
|
626 |
+
# Shifting cache
|
627 |
+
keys_to_keep = self.key_cache[layer_idx][
|
628 |
+
:, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
|
629 |
+
]
|
630 |
+
|
631 |
+
# On RoPE models, we need to recompute the Key rotation as the tokens are shifted
|
632 |
+
if using_rope:
|
633 |
+
rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
|
634 |
+
key_states, self._cos_cache[: self.window_length], self._sin_cache[: self.window_length]
|
635 |
+
)
|
636 |
+
if partial_rotation_size is not None:
|
637 |
+
keys_to_keep, keys_pass = (
|
638 |
+
keys_to_keep[..., :partial_rotation_size],
|
639 |
+
keys_to_keep[..., partial_rotation_size:],
|
640 |
+
)
|
641 |
+
keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
|
642 |
+
if partial_rotation_size is not None:
|
643 |
+
keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)
|
644 |
+
|
645 |
+
# Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
|
646 |
+
sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
|
647 |
+
self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)
|
648 |
+
|
649 |
+
sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
|
650 |
+
values_to_keep = self.value_cache[layer_idx][
|
651 |
+
:, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
|
652 |
+
]
|
653 |
+
self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)
|
654 |
+
|
655 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
656 |
+
|
657 |
+
|
658 |
+
class StaticCache(Cache):
|
659 |
+
"""
|
660 |
+
Static Cache class to be used with `torch.compile(model)` and `torch.export()`.
|
661 |
+
|
662 |
+
Parameters:
|
663 |
+
config (`PretrainedConfig`):
|
664 |
+
The configuration file defining the shape-related attributes required to initialize the static cache.
|
665 |
+
max_batch_size (`int`):
|
666 |
+
The maximum batch size with which the model will be used.
|
667 |
+
max_cache_len (`int`):
|
668 |
+
The maximum sequence length with which the model will be used.
|
669 |
+
device (`torch.device`):
|
670 |
+
The device on which the cache should be initialized. Should be the same as the layer.
|
671 |
+
dtype (*optional*, defaults to `torch.float32`):
|
672 |
+
The default `dtype` to use when initializing the layer.
|
673 |
+
|
674 |
+
Example:
|
675 |
+
|
676 |
+
```python
|
677 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, StaticCache
|
678 |
+
|
679 |
+
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
680 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
681 |
+
|
682 |
+
>>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
|
683 |
+
|
684 |
+
>>> # Prepare a cache class and pass it to model's forward
|
685 |
+
>>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
|
686 |
+
>>> max_generated_length = inputs.input_ids.shape[1] + 10
|
687 |
+
>>> past_key_values = StaticCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
|
688 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
689 |
+
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
|
690 |
+
```
|
691 |
+
"""
|
692 |
+
|
693 |
+
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
|
694 |
+
super().__init__()
|
695 |
+
self.max_batch_size = max_batch_size
|
696 |
+
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
|
697 |
+
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
|
698 |
+
self.head_dim = (
|
699 |
+
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
|
700 |
+
)
|
701 |
+
|
702 |
+
self.dtype = dtype if dtype is not None else torch.float32
|
703 |
+
self.num_key_value_heads = (
|
704 |
+
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
|
705 |
+
)
|
706 |
+
|
707 |
+
self.key_cache: List[torch.Tensor] = []
|
708 |
+
self.value_cache: List[torch.Tensor] = []
|
709 |
+
# Note: There will be significant perf decrease if switching to use 5D tensors instead.
|
710 |
+
cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
|
711 |
+
for idx in range(config.num_hidden_layers):
|
712 |
+
new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
713 |
+
new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
714 |
+
# Notes:
|
715 |
+
# 1. `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
|
716 |
+
# breaks when updating the cache. It can't be used if the cache code is being compiled (but in that case
|
717 |
+
# it is not needed anyway)
|
718 |
+
# 2. `torch.export()` requires mutations to be registered as buffers.
|
719 |
+
if not is_torchdynamo_compiling():
|
720 |
+
self.register_buffer(f"key_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device))
|
721 |
+
self.register_buffer(f"value_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device))
|
722 |
+
new_layer_key_cache = getattr(self, f"key_cache_{idx}")
|
723 |
+
new_layer_value_cache = getattr(self, f"value_cache_{idx}")
|
724 |
+
torch._dynamo.mark_static_address(new_layer_key_cache)
|
725 |
+
torch._dynamo.mark_static_address(new_layer_value_cache)
|
726 |
+
self.key_cache.append(new_layer_key_cache)
|
727 |
+
self.value_cache.append(new_layer_value_cache)
|
728 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
729 |
+
|
730 |
+
def update(
|
731 |
+
self,
|
732 |
+
key_states: torch.Tensor,
|
733 |
+
value_states: torch.Tensor,
|
734 |
+
layer_idx: int,
|
735 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
736 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
737 |
+
"""
|
738 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
739 |
+
It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
|
740 |
+
|
741 |
+
Parameters:
|
742 |
+
key_states (`torch.Tensor`):
|
743 |
+
The new key states to cache.
|
744 |
+
value_states (`torch.Tensor`):
|
745 |
+
The new value states to cache.
|
746 |
+
layer_idx (`int`):
|
747 |
+
The index of the layer to cache the states for.
|
748 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
749 |
+
Additional arguments for the cache subclass. The `StaticCache` needs the `cache_position` input
|
750 |
+
to know how where to write in the cache.
|
751 |
+
|
752 |
+
Return:
|
753 |
+
A tuple containing the updated key and value states.
|
754 |
+
"""
|
755 |
+
# Update the number of seen tokens
|
756 |
+
if layer_idx == 0:
|
757 |
+
self._seen_tokens += key_states.shape[-2]
|
758 |
+
|
759 |
+
cache_position = cache_kwargs.get("cache_position")
|
760 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device=key_states.device)
|
761 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device=value_states.device)
|
762 |
+
k_out = self.key_cache[layer_idx]
|
763 |
+
v_out = self.value_cache[layer_idx]
|
764 |
+
|
765 |
+
if cache_position is None:
|
766 |
+
k_out.copy_(key_states)
|
767 |
+
v_out.copy_(value_states)
|
768 |
+
else:
|
769 |
+
# Note: here we use `tensor.index_copy_(dim, index, tensor)` that is equivalent to
|
770 |
+
# `tensor[:, :, index] = tensor`, but the first one is compile-friendly and it does explicitly an in-place
|
771 |
+
# operation, that avoids copies and uses less memory.
|
772 |
+
try:
|
773 |
+
k_out.index_copy_(2, cache_position, key_states)
|
774 |
+
v_out.index_copy_(2, cache_position, value_states)
|
775 |
+
except NotImplementedError:
|
776 |
+
# The operator 'aten::index_copy.out' is not currently implemented for the MPS device.
|
777 |
+
k_out[:, :, cache_position] = key_states
|
778 |
+
v_out[:, :, cache_position] = value_states
|
779 |
+
|
780 |
+
return k_out, v_out
|
781 |
+
|
782 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
783 |
+
"""Returns the sequence length of the cached states that were seen by the model."""
|
784 |
+
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
|
785 |
+
# limit the check to the first batch member and head dimension.
|
786 |
+
# TODO: deprecate this function in favor of `cache_position`
|
787 |
+
# return (self.key_cache[layer_idx][0, 0].any(dim=-1)).sum()
|
788 |
+
return self._seen_tokens
|
789 |
+
|
790 |
+
def get_max_length(self) -> Optional[int]:
|
791 |
+
"""Returns the maximum sequence length of the cached states."""
|
792 |
+
return self.max_cache_len
|
793 |
+
|
794 |
+
def reset(self):
|
795 |
+
self._seen_tokens = 0
|
796 |
+
"""Resets the cache values while preserving the objects"""
|
797 |
+
for layer_idx in range(len(self.key_cache)):
|
798 |
+
# In-place ops prevent breaking the static address
|
799 |
+
self.key_cache[layer_idx].zero_()
|
800 |
+
self.value_cache[layer_idx].zero_()
|
801 |
+
|
802 |
+
|
803 |
+
class SlidingWindowCache(StaticCache):
|
804 |
+
"""
|
805 |
+
Sliding Window Cache class to be used with `torch.compile` for models like Mistral that support sliding window attention.
|
806 |
+
Every time when we try to update the cache, we compute the `indices` based on `cache_position >= self.config.sliding_window - 1`,
|
807 |
+
if true(which means the cache can not hold all the old key value states and new states together because of the sliding window constraint),
|
808 |
+
we need to do a cycle shift based on `indices` to replace the oldest states by the new key value states passed in.
|
809 |
+
|
810 |
+
The `to_shift` is only true once we are above sliding_window. Thus with `sliding_window==64`:
|
811 |
+
|
812 |
+
indices = (slicing + to_shift[-1].int()-1) % self.config.sliding_window
|
813 |
+
tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
|
814 |
+
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
815 |
+
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
|
816 |
+
55, 56, 57, 58, 59, 60, 61, 62, 63, 0])
|
817 |
+
|
818 |
+
We overwrite the cache using these, then we always write at cache_position (clamped to `sliding_window`)
|
819 |
+
|
820 |
+
Parameters:
|
821 |
+
config (`PretrainedConfig`):
|
822 |
+
The configuration file defining the shape-related attributes required to initialize the static cache.
|
823 |
+
max_batch_size (`int`):
|
824 |
+
The maximum batch size with which the model will be used.
|
825 |
+
max_cache_len (`int`):
|
826 |
+
The maximum sequence length with which the model will be used.
|
827 |
+
device (`torch.device`):
|
828 |
+
The device on which the cache should be initialized. Should be the same as the layer.
|
829 |
+
dtype (*optional*, defaults to `torch.float32`):
|
830 |
+
The default `dtype` to use when initializing the layer.
|
831 |
+
|
832 |
+
Example:
|
833 |
+
|
834 |
+
```python
|
835 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, SlidingWindowCache
|
836 |
+
|
837 |
+
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
838 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
839 |
+
|
840 |
+
>>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
|
841 |
+
|
842 |
+
>>> # Prepare a cache class and pass it to model's forward
|
843 |
+
>>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
|
844 |
+
>>> max_generated_length = inputs.input_ids.shape[1] + 10
|
845 |
+
>>> past_key_values = SlidingWindowCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
|
846 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
847 |
+
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
|
848 |
+
```
|
849 |
+
"""
|
850 |
+
|
851 |
+
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
|
852 |
+
super().__init__(config, max_batch_size, max_cache_len, device, dtype)
|
853 |
+
if not hasattr(config, "sliding_window") or config.sliding_window is None:
|
854 |
+
raise ValueError(
|
855 |
+
"Setting `cache_implementation` to 'sliding_window' requires the model config supporting "
|
856 |
+
"sliding window attention, please check if there is a `sliding_window` field in the model "
|
857 |
+
"config and it's not set to None."
|
858 |
+
)
|
859 |
+
max_cache_len = min(config.sliding_window, max_cache_len)
|
860 |
+
super().__init__(
|
861 |
+
config=config, max_batch_size=max_batch_size, max_cache_len=max_cache_len, device=device, dtype=dtype
|
862 |
+
)
|
863 |
+
|
864 |
+
def update(
|
865 |
+
self,
|
866 |
+
key_states: torch.Tensor,
|
867 |
+
value_states: torch.Tensor,
|
868 |
+
layer_idx: int,
|
869 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
870 |
+
) -> Tuple[torch.Tensor]:
|
871 |
+
cache_position = cache_kwargs.get("cache_position")
|
872 |
+
k_out = self.key_cache[layer_idx]
|
873 |
+
v_out = self.value_cache[layer_idx]
|
874 |
+
|
875 |
+
# assume this only happens in prefill phase when prompt length > sliding_window_size (= max_cache_len)
|
876 |
+
if cache_position.shape[0] > self.max_cache_len:
|
877 |
+
k_out = key_states[:, :, -self.max_cache_len :, :]
|
878 |
+
v_out = value_states[:, :, -self.max_cache_len :, :]
|
879 |
+
# Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
|
880 |
+
self.key_cache[layer_idx] += k_out
|
881 |
+
self.value_cache[layer_idx] += v_out
|
882 |
+
# we should return the whole states instead of k_out, v_out to take the whole prompt
|
883 |
+
# into consideration when building kv cache instead of just throwing away tokens outside of the window
|
884 |
+
return key_states, value_states
|
885 |
+
|
886 |
+
slicing = torch.ones(self.max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
|
887 |
+
cache_position = cache_position.clamp(0, self.max_cache_len - 1)
|
888 |
+
to_shift = cache_position >= self.max_cache_len - 1
|
889 |
+
indices = (slicing + to_shift[-1].int() - 1) % self.max_cache_len
|
890 |
+
|
891 |
+
k_out = k_out[:, :, indices]
|
892 |
+
v_out = v_out[:, :, indices]
|
893 |
+
|
894 |
+
try:
|
895 |
+
cache_position.to(device=k_out.device)
|
896 |
+
k_out.index_copy_(2, cache_position, key_states)
|
897 |
+
v_out.index_copy_(2, cache_position, value_states)
|
898 |
+
except NotImplementedError:
|
899 |
+
# The operator 'aten::index_copy.out' is not currently implemented for the MPS device.
|
900 |
+
k_out[:, :, cache_position] = key_states
|
901 |
+
v_out[:, :, cache_position] = value_states
|
902 |
+
|
903 |
+
# `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
|
904 |
+
self.key_cache[layer_idx].zero_()
|
905 |
+
self.value_cache[layer_idx].zero_()
|
906 |
+
|
907 |
+
self.key_cache[layer_idx] += k_out
|
908 |
+
self.value_cache[layer_idx] += v_out
|
909 |
+
|
910 |
+
return k_out, v_out
|
911 |
+
|
912 |
+
def get_max_length(self) -> Optional[int]:
|
913 |
+
# in theory there is no limit because the sliding window size is fixed no matter how long the sentence is
|
914 |
+
return None
|
915 |
+
|
916 |
+
def reset(self):
|
917 |
+
for layer_idx in range(len(self.key_cache)):
|
918 |
+
# In-place ops prevent breaking the static address
|
919 |
+
self.key_cache[layer_idx].zero_()
|
920 |
+
self.value_cache[layer_idx].zero_()
|
921 |
+
|
922 |
+
|
923 |
+
class EncoderDecoderCache(Cache):
|
924 |
+
"""
|
925 |
+
Base, abstract class for all encoder-decoder caches. Can be used to hold combinations of self-attention and
|
926 |
+
cross-attention caches.
|
927 |
+
|
928 |
+
Example:
|
929 |
+
|
930 |
+
```python
|
931 |
+
>>> from transformers import AutoProcessor, AutoModelForCausalLM, DynamicCache, EncoderDecoderCache
|
932 |
+
|
933 |
+
>>> model = AutoModelForCausalLM.from_pretrained("openai/whisper-small")
|
934 |
+
>>> processor = AutoProcessor.from_pretrained("openai/whisper-small")
|
935 |
+
|
936 |
+
>>> inputs = processor(audio=YOUR-AUDIO, return_tensors="pt")
|
937 |
+
|
938 |
+
>>> # Prepare cache classes for encoder and decoder and pass it to model's forward
|
939 |
+
>>> self_attention_cache = DynamicCache()
|
940 |
+
>>> cross_attention_cache = DynamicCache()
|
941 |
+
>>> past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache)
|
942 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
943 |
+
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
|
944 |
+
```
|
945 |
+
|
946 |
+
"""
|
947 |
+
|
948 |
+
def __init__(self, self_attention_cache: Cache, cross_attention_cache: Cache):
|
949 |
+
super().__init__()
|
950 |
+
self.self_attention_cache = self_attention_cache
|
951 |
+
self.cross_attention_cache = cross_attention_cache
|
952 |
+
|
953 |
+
self.is_updated = {}
|
954 |
+
for layer_idx in range(len(cross_attention_cache.key_cache)):
|
955 |
+
self.is_updated[layer_idx] = bool(cross_attention_cache.get_seq_length(layer_idx) > 0)
|
956 |
+
|
957 |
+
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
958 |
+
"""
|
959 |
+
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
960 |
+
sequence length.
|
961 |
+
"""
|
962 |
+
if layer_idx < len(self):
|
963 |
+
return (
|
964 |
+
self.self_attention_cache.key_cache[layer_idx],
|
965 |
+
self.self_attention_cache.value_cache[layer_idx],
|
966 |
+
self.cross_attention_cache.key_cache[layer_idx],
|
967 |
+
self.cross_attention_cache.value_cache[layer_idx],
|
968 |
+
)
|
969 |
+
else:
|
970 |
+
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
971 |
+
|
972 |
+
def __len__(self):
|
973 |
+
"""
|
974 |
+
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
975 |
+
to the number of layers in the model.
|
976 |
+
"""
|
977 |
+
return len(self.self_attention_cache)
|
978 |
+
|
979 |
+
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
980 |
+
"""Converts the `EncoderDecoderCache` instance into its equivalent in the legacy cache format."""
|
981 |
+
legacy_cache = ()
|
982 |
+
if len(self.cross_attention_cache) > 0:
|
983 |
+
for self_attn, cross_attn in zip(
|
984 |
+
self.self_attention_cache.to_legacy_cache(), self.cross_attention_cache.to_legacy_cache()
|
985 |
+
):
|
986 |
+
legacy_cache += (self_attn + cross_attn,)
|
987 |
+
else:
|
988 |
+
legacy_cache = self.self_attention_cache.to_legacy_cache()
|
989 |
+
return legacy_cache
|
990 |
+
|
991 |
+
@classmethod
|
992 |
+
def from_legacy_cache(
|
993 |
+
cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
994 |
+
) -> "EncoderDecoderCache":
|
995 |
+
"""Converts a cache in the legacy cache format into an equivalent `EncoderDecoderCache`."""
|
996 |
+
cache = cls(self_attention_cache=DynamicCache(), cross_attention_cache=DynamicCache())
|
997 |
+
if past_key_values is not None:
|
998 |
+
for layer_idx in range(len(past_key_values)):
|
999 |
+
key_states, value_states = past_key_values[layer_idx][:2]
|
1000 |
+
cache.self_attention_cache.update(key_states, value_states, layer_idx)
|
1001 |
+
if len(past_key_values[layer_idx]) > 2:
|
1002 |
+
key_states, value_states = past_key_values[layer_idx][2:]
|
1003 |
+
cache.cross_attention_cache.update(key_states, value_states, layer_idx)
|
1004 |
+
cache.is_updated[layer_idx] = True
|
1005 |
+
return cache
|
1006 |
+
|
1007 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
1008 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
1009 |
+
if len(self.self_attention_cache.key_cache) <= layer_idx:
|
1010 |
+
return 0
|
1011 |
+
return (self.self_attention_cache.key_cache[layer_idx][0, 0].any(dim=-1)).sum()
|
1012 |
+
|
1013 |
+
def reset(self):
|
1014 |
+
if hasattr(self.self_attention_cache, "reset"):
|
1015 |
+
self.self_attention_cache.reset()
|
1016 |
+
if hasattr(self.cross_attention_cache, "reset"):
|
1017 |
+
self.cross_attention_cache.reset()
|
1018 |
+
elif not hasattr(self.self_attention_cache, "reset") and not hasattr(self.cross_attention_cache, "reset"):
|
1019 |
+
raise ValueError(
|
1020 |
+
"Neither self nor cross-attention cache have valid `.reset()` methods. `.reset()` should "
|
1021 |
+
"only be called on compatible cache classes, such as `StaticCache` or `SlidingWindowCache`. "
|
1022 |
+
f"Got {self.self_attention_cache.__str__()} for the self attention cache and "
|
1023 |
+
f"{self.cross_attention_cache.__str__()} for the cross attention cache."
|
1024 |
+
)
|
1025 |
+
for layer_idx in self.is_updated:
|
1026 |
+
self.is_updated[layer_idx] = False
|
1027 |
+
|
1028 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
1029 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
1030 |
+
self.self_attention_cache.reorder_cache(beam_idx)
|
1031 |
+
self.cross_attention_cache.reorder_cache(beam_idx)
|
1032 |
+
|
1033 |
+
def check_dynamic_cache(self, method: str):
|
1034 |
+
if not (
|
1035 |
+
isinstance(self.self_attention_cache, DynamicCache)
|
1036 |
+
and isinstance(self.cross_attention_cache, DynamicCache)
|
1037 |
+
):
|
1038 |
+
raise ValueError(
|
1039 |
+
f"`{method}` is only defined for dynamic cache, got {self.self_attention_cache.__str__()} for the self "
|
1040 |
+
f"attention cache and {self.cross_attention_cache.__str__()} for the cross attention cache."
|
1041 |
+
)
|
1042 |
+
|
1043 |
+
# TODO(gante, sanchit-gandhi): move following functionality into `.generate`
|
1044 |
+
def crop(self, maximum_length: int):
|
1045 |
+
"""Crop the past key values up to a new `maximum_length` in terms of tokens. `maximum_length` can also be
|
1046 |
+
negative to remove `maximum_length` tokens. This is used in assisted decoding and contrastive search."""
|
1047 |
+
self.check_dynamic_cache(self.crop.__name__)
|
1048 |
+
self.self_attention_cache.crop(maximum_length)
|
1049 |
+
|
1050 |
+
def batch_split(self, full_batch_size: int, split_size: int) -> "List[EncoderDecoderCache]":
|
1051 |
+
"""Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
|
1052 |
+
`_split_model_inputs()` in `generation.utils`"""
|
1053 |
+
self.check_dynamic_cache(self.batch_split.__name__)
|
1054 |
+
self_attention_cache = self.self_attention_cache.batch_split(full_batch_size, split_size)
|
1055 |
+
cross_attention_cache = self.cross_attention_cache.batch_split(full_batch_size, split_size)
|
1056 |
+
|
1057 |
+
out = []
|
1058 |
+
for self_attn, cross_attn in zip(self_attention_cache, cross_attention_cache):
|
1059 |
+
out.append(EncoderDecoderCache(self_attn, cross_attn))
|
1060 |
+
return out
|
1061 |
+
|
1062 |
+
@classmethod
|
1063 |
+
def from_batch_splits(cls, splits: List["EncoderDecoderCache"]) -> "EncoderDecoderCache":
|
1064 |
+
"""This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
|
1065 |
+
`generation.utils`"""
|
1066 |
+
self_attention_cache = DynamicCache()
|
1067 |
+
cross_attention_cache = DynamicCache()
|
1068 |
+
for idx in range(len(splits[0])):
|
1069 |
+
layer_keys = torch.cat([current.self_attention_cache.key_cache[idx] for current in splits], dim=0)
|
1070 |
+
layer_values = torch.cat([current.self_attention_cache.value_cache[idx] for current in splits], dim=0)
|
1071 |
+
self_attention_cache.update(layer_keys, layer_values, idx)
|
1072 |
+
|
1073 |
+
layer_keys = torch.cat([current.cross_attention_cache.key_cache[idx] for current in splits], dim=0)
|
1074 |
+
layer_values = torch.cat([current.cross_attention_cache.value_cache[idx] for current in splits], dim=0)
|
1075 |
+
cross_attention_cache.update(layer_keys, layer_values, idx)
|
1076 |
+
return cls(self_attention_cache, cross_attention_cache)
|
1077 |
+
|
1078 |
+
def batch_repeat_interleave(self, repeats: int):
|
1079 |
+
"""Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
|
1080 |
+
self.check_dynamic_cache(self.batch_repeat_interleave.__name__)
|
1081 |
+
self.self_attention_cache.batch_repeat_interleave(repeats)
|
1082 |
+
self.cross_attention_cache.batch_repeat_interleave(repeats)
|
1083 |
+
|
1084 |
+
def batch_select_indices(self, indices: torch.Tensor):
|
1085 |
+
"""Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
|
1086 |
+
self.check_dynamic_cache(self.batch_select_indices.__name__)
|
1087 |
+
self.self_attention_cache.batch_select_indices(indices)
|
1088 |
+
self.cross_attention_cache.batch_select_indices(indices)
|
1089 |
+
|
1090 |
+
|
1091 |
+
class HybridCache(Cache):
|
1092 |
+
"""
|
1093 |
+
Hybrid Cache class to be used with `torch.compile` for Gemma2 models that alternate between a local sliding window attention
|
1094 |
+
and global attention in every other layer. Under the hood, Hybrid Cache leverages ["SlidingWindowCache"] for sliding window attention
|
1095 |
+
and ["StaticCache"] for global attention. For more information, see the documentation of each subcomponeent cache class.
|
1096 |
+
|
1097 |
+
Parameters:
|
1098 |
+
config (`PretrainedConfig):
|
1099 |
+
The configuration file defining the shape-related attributes required to initialize the static cache.
|
1100 |
+
max_batch_size (`int`):
|
1101 |
+
The maximum batch size with which the model will be used.
|
1102 |
+
max_cache_len (`int`):
|
1103 |
+
The maximum sequence length with which the model will be used.
|
1104 |
+
device (`torch.device`, *optional*, defaults to `"cpu"`):
|
1105 |
+
The device on which the cache should be initialized. Should be the same as the layer.
|
1106 |
+
dtype (*optional*, defaults to `torch.float32`):
|
1107 |
+
The default `dtype` to use when initializing the layer.
|
1108 |
+
|
1109 |
+
Example:
|
1110 |
+
|
1111 |
+
```python
|
1112 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, HybridCache
|
1113 |
+
|
1114 |
+
>>> model = AutoModelForCausalLM.from_pretrained("google/gemma-2-9b")
|
1115 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
1116 |
+
|
1117 |
+
>>> inputs = tokenizer(text="My name is Gemma", return_tensors="pt")
|
1118 |
+
|
1119 |
+
>>> # Prepare a cache class and pass it to model's forward
|
1120 |
+
>>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
|
1121 |
+
>>> max_generated_length = inputs.input_ids.shape[1] + 10
|
1122 |
+
>>> past_key_values = HybridCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
|
1123 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
1124 |
+
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
|
1125 |
+
```
|
1126 |
+
"""
|
1127 |
+
|
1128 |
+
def __init__(self, config: PretrainedConfig, max_batch_size, max_cache_len, device="cpu", dtype=None) -> None:
|
1129 |
+
super().__init__()
|
1130 |
+
if not hasattr(config, "sliding_window") or config.sliding_window is None:
|
1131 |
+
raise ValueError(
|
1132 |
+
"Setting `cache_implementation` to 'sliding_window' requires the model config supporting "
|
1133 |
+
"sliding window attention, please check if there is a `sliding_window` field in the model "
|
1134 |
+
"config and it's not set to None."
|
1135 |
+
)
|
1136 |
+
self.max_cache_len = max_cache_len
|
1137 |
+
self.max_batch_size = max_batch_size
|
1138 |
+
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
|
1139 |
+
self.head_dim = (
|
1140 |
+
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
|
1141 |
+
)
|
1142 |
+
|
1143 |
+
self.dtype = dtype if dtype is not None else torch.float32
|
1144 |
+
self.num_key_value_heads = (
|
1145 |
+
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
|
1146 |
+
)
|
1147 |
+
self.is_sliding = torch.tensor(
|
1148 |
+
[not bool(i % 2) for i in range(config.num_hidden_layers)], dtype=torch.bool, device=device
|
1149 |
+
)
|
1150 |
+
self.key_cache: List[torch.Tensor] = []
|
1151 |
+
self.value_cache: List[torch.Tensor] = []
|
1152 |
+
global_cache_shape = (max_batch_size, self.num_key_value_heads, max_cache_len, self.head_dim)
|
1153 |
+
sliding_cache_shape = (
|
1154 |
+
max_batch_size,
|
1155 |
+
self.num_key_value_heads,
|
1156 |
+
min(config.sliding_window, max_cache_len),
|
1157 |
+
self.head_dim,
|
1158 |
+
)
|
1159 |
+
for i in range(config.num_hidden_layers):
|
1160 |
+
# Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
|
1161 |
+
# breaks when updating the cache.
|
1162 |
+
cache_shape = global_cache_shape if not self.is_sliding[i] else sliding_cache_shape
|
1163 |
+
new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
1164 |
+
new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
1165 |
+
torch._dynamo.mark_static_address(new_layer_key_cache)
|
1166 |
+
torch._dynamo.mark_static_address(new_layer_value_cache)
|
1167 |
+
self.key_cache.append(new_layer_key_cache)
|
1168 |
+
self.value_cache.append(new_layer_value_cache)
|
1169 |
+
|
1170 |
+
def _sliding_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
|
1171 |
+
if cache_position.shape[0] > max_cache_len:
|
1172 |
+
k_out = key_states[:, :, -max_cache_len:, :]
|
1173 |
+
v_out = value_states[:, :, -max_cache_len:, :]
|
1174 |
+
# Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
|
1175 |
+
self.key_cache[layer_idx] += k_out
|
1176 |
+
self.value_cache[layer_idx] += v_out
|
1177 |
+
# we should return the whole states instead of k_out, v_out to take the whole prompt
|
1178 |
+
# into consideration when building kv cache instead of just throwing away tokens outside of the window
|
1179 |
+
return key_states, value_states
|
1180 |
+
|
1181 |
+
slicing = torch.ones(max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
|
1182 |
+
cache_position = cache_position.clamp(0, max_cache_len - 1)
|
1183 |
+
to_shift = cache_position >= max_cache_len - 1
|
1184 |
+
indices = (slicing + to_shift[-1].int() - 1) % max_cache_len
|
1185 |
+
k_out = k_out[:, :, indices]
|
1186 |
+
v_out = v_out[:, :, indices]
|
1187 |
+
|
1188 |
+
k_out[:, :, cache_position] = key_states
|
1189 |
+
v_out[:, :, cache_position] = value_states
|
1190 |
+
# `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
|
1191 |
+
self.key_cache[layer_idx].zero_()
|
1192 |
+
self.value_cache[layer_idx].zero_()
|
1193 |
+
|
1194 |
+
self.key_cache[layer_idx] += k_out
|
1195 |
+
self.value_cache[layer_idx] += v_out
|
1196 |
+
return k_out, v_out
|
1197 |
+
|
1198 |
+
def _static_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
|
1199 |
+
k_out[:, :, cache_position] = key_states
|
1200 |
+
v_out[:, :, cache_position] = value_states
|
1201 |
+
|
1202 |
+
self.key_cache[layer_idx] = k_out
|
1203 |
+
self.value_cache[layer_idx] = v_out
|
1204 |
+
return k_out, v_out
|
1205 |
+
|
1206 |
+
def update(
|
1207 |
+
self,
|
1208 |
+
key_states: torch.Tensor,
|
1209 |
+
value_states: torch.Tensor,
|
1210 |
+
layer_idx: int,
|
1211 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
1212 |
+
) -> Tuple[torch.Tensor]:
|
1213 |
+
cache_position = cache_kwargs.get("cache_position")
|
1214 |
+
sliding_window = cache_kwargs.get("sliding_window")
|
1215 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device=key_states.device)
|
1216 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device=value_states.device)
|
1217 |
+
k_out = self.key_cache[layer_idx]
|
1218 |
+
v_out = self.value_cache[layer_idx]
|
1219 |
+
if sliding_window:
|
1220 |
+
update_fn = self._sliding_update
|
1221 |
+
else:
|
1222 |
+
update_fn = self._static_update
|
1223 |
+
|
1224 |
+
return update_fn(
|
1225 |
+
cache_position,
|
1226 |
+
layer_idx,
|
1227 |
+
key_states,
|
1228 |
+
value_states,
|
1229 |
+
k_out,
|
1230 |
+
v_out,
|
1231 |
+
k_out.shape[2],
|
1232 |
+
)
|
1233 |
+
|
1234 |
+
def get_max_length(self) -> Optional[int]:
|
1235 |
+
# in theory there is no limit because the sliding window size is fixed
|
1236 |
+
# no matter how long the sentence is
|
1237 |
+
return self.max_cache_len
|
1238 |
+
|
1239 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0):
|
1240 |
+
return None
|
1241 |
+
|
1242 |
+
def reset(self):
|
1243 |
+
"""Resets the cache values while preserving the objects"""
|
1244 |
+
for layer_idx in range(len(self.key_cache)):
|
1245 |
+
# In-place ops prevent breaking the static address
|
1246 |
+
self.key_cache[layer_idx].zero_()
|
1247 |
+
self.value_cache[layer_idx].zero_()
|
1248 |
+
|
1249 |
+
|
1250 |
+
class MambaCache:
|
1251 |
+
"""
|
1252 |
+
Cache for mamba model which does not have attention mechanism and key value states.
|
1253 |
+
|
1254 |
+
Arguments:
|
1255 |
+
config (`PretrainedConfig):
|
1256 |
+
The configuration file defining the shape-related attributes required to initialize the static cache.
|
1257 |
+
max_batch_size (`int`):
|
1258 |
+
The maximum batch size with which the model will be used.
|
1259 |
+
dtype (*optional*, defaults to `torch.float16`):
|
1260 |
+
The default `dtype` to use when initializing the layer.
|
1261 |
+
device (`torch.device`, *optional*):
|
1262 |
+
The device on which the cache should be initialized. Should be the same as the layer.
|
1263 |
+
|
1264 |
+
Attributes:
|
1265 |
+
dtype: (`torch.dtype`):
|
1266 |
+
The default `dtype` used to initializing the cache.
|
1267 |
+
intermediate_size: (`int`):
|
1268 |
+
Model's intermediate_size taken from config.
|
1269 |
+
ssm_state_size: (`int`):
|
1270 |
+
Model's state_size taken from config.
|
1271 |
+
conv_kernel_size: (`int`):
|
1272 |
+
Model's convolution kernel size taken from config
|
1273 |
+
conv_states: (`torch.Tensor`):
|
1274 |
+
A tensor of shape `[layer_idx, batch_size, intermediate_size, conv_kernel_size]` that holds convolutional states.
|
1275 |
+
ssm_states: (`torch.Tensor`):
|
1276 |
+
A tensor of shape `[layer_idx, batch_size, intermediate_size, ssm_state_size]` that holds ssm states
|
1277 |
+
|
1278 |
+
Example:
|
1279 |
+
|
1280 |
+
```python
|
1281 |
+
>>> from transformers import AutoTokenizer, MambaForCausalLM, MambaCache
|
1282 |
+
|
1283 |
+
>>> model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
|
1284 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
|
1285 |
+
|
1286 |
+
>>> inputs = tokenizer(text="My name is Mamba", return_tensors="pt")
|
1287 |
+
|
1288 |
+
>>> # Prepare a cache class and pass it to model's forward
|
1289 |
+
>>> past_key_values = MambaCache(config=model.config, max_batch_size=1, device=model.device, dtype=model.dtype)
|
1290 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
1291 |
+
>>> past_kv = outputs.past_key_values
|
1292 |
+
```
|
1293 |
+
"""
|
1294 |
+
|
1295 |
+
def __init__(
|
1296 |
+
self,
|
1297 |
+
config: PretrainedConfig,
|
1298 |
+
max_batch_size: int,
|
1299 |
+
dtype: torch.dtype = torch.float16,
|
1300 |
+
device: Optional[str] = None,
|
1301 |
+
**kwargs,
|
1302 |
+
):
|
1303 |
+
self.dtype = dtype
|
1304 |
+
self.max_batch_size = max_batch_size
|
1305 |
+
self.intermediate_size = config.intermediate_size
|
1306 |
+
self.ssm_state_size = config.state_size
|
1307 |
+
self.conv_kernel_size = config.conv_kernel
|
1308 |
+
|
1309 |
+
self.conv_states: torch.Tensor = torch.zeros(
|
1310 |
+
config.num_hidden_layers,
|
1311 |
+
self.max_batch_size,
|
1312 |
+
self.intermediate_size,
|
1313 |
+
self.conv_kernel_size,
|
1314 |
+
device=device,
|
1315 |
+
dtype=dtype,
|
1316 |
+
)
|
1317 |
+
self.ssm_states: torch.Tensor = torch.zeros(
|
1318 |
+
config.num_hidden_layers,
|
1319 |
+
self.max_batch_size,
|
1320 |
+
self.intermediate_size,
|
1321 |
+
self.ssm_state_size,
|
1322 |
+
device=device,
|
1323 |
+
dtype=dtype,
|
1324 |
+
)
|
1325 |
+
|
1326 |
+
torch._dynamo.mark_static_address(self.conv_states)
|
1327 |
+
torch._dynamo.mark_static_address(self.ssm_states)
|
1328 |
+
|
1329 |
+
def update_conv_state(
|
1330 |
+
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
|
1331 |
+
) -> torch.Tensor:
|
1332 |
+
conv_state = self.conv_states[layer_idx]
|
1333 |
+
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
|
1334 |
+
|
1335 |
+
conv_state = conv_state.roll(shifts=-1, dims=-1)
|
1336 |
+
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
|
1337 |
+
self.conv_states[layer_idx].zero_()
|
1338 |
+
self.conv_states[layer_idx] += conv_state
|
1339 |
+
return self.conv_states[layer_idx]
|
1340 |
+
|
1341 |
+
def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor):
|
1342 |
+
self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device)
|
1343 |
+
return self.ssm_states[layer_idx]
|
1344 |
+
|
1345 |
+
def reset(self):
|
1346 |
+
self.conv_states.zero_()
|
1347 |
+
self.ssm_states.zero_()
|
transformers_4_44_2__configuration_llama.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""LLaMA model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from .transformers_4_44_2__modeling_rope_utils import rope_config_validation
|
24 |
+
|
25 |
+
|
26 |
+
class LlamaConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
29 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
30 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
38 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
40 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
41 |
+
Dimension of the hidden representations.
|
42 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
43 |
+
Dimension of the MLP representations.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
45 |
+
Number of hidden layers in the Transformer decoder.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
47 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
48 |
+
num_key_value_heads (`int`, *optional*):
|
49 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
50 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
51 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
52 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
53 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
54 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
55 |
+
`num_attention_heads`.
|
56 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
57 |
+
The non-linear activation function (function or string) in the decoder.
|
58 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
59 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
60 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
64 |
+
The epsilon used by the rms normalization layers.
|
65 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
67 |
+
relevant if `config.is_decoder=True`.
|
68 |
+
pad_token_id (`int`, *optional*):
|
69 |
+
Padding token id.
|
70 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
71 |
+
Beginning of stream token id.
|
72 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
73 |
+
End of stream token id.
|
74 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
75 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
76 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
77 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
78 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
79 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
80 |
+
Whether to tie weight embeddings
|
81 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
82 |
+
The base period of the RoPE embeddings.
|
83 |
+
rope_scaling (`Dict`, *optional*):
|
84 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
85 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
86 |
+
accordingly.
|
87 |
+
Expected contents:
|
88 |
+
`rope_type` (`str`):
|
89 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
90 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
91 |
+
`factor` (`float`, *optional*):
|
92 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
93 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
94 |
+
original maximum pre-trained length.
|
95 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
96 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
97 |
+
pretraining.
|
98 |
+
`attention_factor` (`float`, *optional*):
|
99 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
100 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
101 |
+
`factor` field to infer the suggested value.
|
102 |
+
`beta_fast` (`float`, *optional*):
|
103 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
104 |
+
ramp function. If unspecified, it defaults to 32.
|
105 |
+
`beta_slow` (`float`, *optional*):
|
106 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
107 |
+
ramp function. If unspecified, it defaults to 1.
|
108 |
+
`short_factor` (`List[float]`, *optional*):
|
109 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
110 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
111 |
+
size divided by the number of attention heads divided by 2
|
112 |
+
`long_factor` (`List[float]`, *optional*):
|
113 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
114 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
115 |
+
size divided by the number of attention heads divided by 2
|
116 |
+
`low_freq_factor` (`float`, *optional*):
|
117 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
118 |
+
`high_freq_factor` (`float`, *optional*):
|
119 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
120 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
121 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
122 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
123 |
+
The dropout ratio for the attention probabilities.
|
124 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
125 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
126 |
+
|
127 |
+
```python
|
128 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
129 |
+
|
130 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
131 |
+
>>> configuration = LlamaConfig()
|
132 |
+
|
133 |
+
>>> # Initializing a model from the llama-7b style configuration
|
134 |
+
>>> model = LlamaModel(configuration)
|
135 |
+
|
136 |
+
>>> # Accessing the model configuration
|
137 |
+
>>> configuration = model.config
|
138 |
+
```"""
|
139 |
+
|
140 |
+
model_type = "llama"
|
141 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
142 |
+
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
vocab_size=32000,
|
146 |
+
hidden_size=4096,
|
147 |
+
intermediate_size=11008,
|
148 |
+
num_hidden_layers=32,
|
149 |
+
num_attention_heads=32,
|
150 |
+
num_key_value_heads=None,
|
151 |
+
hidden_act="silu",
|
152 |
+
max_position_embeddings=2048,
|
153 |
+
initializer_range=0.02,
|
154 |
+
rms_norm_eps=1e-6,
|
155 |
+
use_cache=True,
|
156 |
+
pad_token_id=None,
|
157 |
+
bos_token_id=1,
|
158 |
+
eos_token_id=2,
|
159 |
+
pretraining_tp=1,
|
160 |
+
tie_word_embeddings=False,
|
161 |
+
rope_theta=10000.0,
|
162 |
+
rope_scaling=None,
|
163 |
+
attention_bias=False,
|
164 |
+
attention_dropout=0.0,
|
165 |
+
mlp_bias=False,
|
166 |
+
**kwargs,
|
167 |
+
):
|
168 |
+
self.vocab_size = vocab_size
|
169 |
+
self.max_position_embeddings = max_position_embeddings
|
170 |
+
self.hidden_size = hidden_size
|
171 |
+
self.intermediate_size = intermediate_size
|
172 |
+
self.num_hidden_layers = num_hidden_layers
|
173 |
+
self.num_attention_heads = num_attention_heads
|
174 |
+
|
175 |
+
# for backward compatibility
|
176 |
+
if num_key_value_heads is None:
|
177 |
+
num_key_value_heads = num_attention_heads
|
178 |
+
|
179 |
+
self.num_key_value_heads = num_key_value_heads
|
180 |
+
self.hidden_act = hidden_act
|
181 |
+
self.initializer_range = initializer_range
|
182 |
+
self.rms_norm_eps = rms_norm_eps
|
183 |
+
self.pretraining_tp = pretraining_tp
|
184 |
+
self.use_cache = use_cache
|
185 |
+
self.rope_theta = rope_theta
|
186 |
+
self.rope_scaling = rope_scaling
|
187 |
+
self.attention_bias = attention_bias
|
188 |
+
self.attention_dropout = attention_dropout
|
189 |
+
self.mlp_bias = mlp_bias
|
190 |
+
|
191 |
+
# Validate the correctness of rotary position embeddings parameters
|
192 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
193 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
194 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
195 |
+
rope_config_validation(self)
|
196 |
+
|
197 |
+
super().__init__(
|
198 |
+
pad_token_id=pad_token_id,
|
199 |
+
bos_token_id=bos_token_id,
|
200 |
+
eos_token_id=eos_token_id,
|
201 |
+
tie_word_embeddings=tie_word_embeddings,
|
202 |
+
**kwargs,
|
203 |
+
)
|
transformers_4_44_2__modeling_attn_mask_utils.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class AttentionMaskConverter:
|
22 |
+
"""
|
23 |
+
A utility attention mask class that allows one to:
|
24 |
+
- Create a causal 4d mask
|
25 |
+
- Create a causal 4d mask with slided window
|
26 |
+
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
|
27 |
+
key_value_length) that can be multiplied with attention scores
|
28 |
+
|
29 |
+
Examples:
|
30 |
+
|
31 |
+
```python
|
32 |
+
>>> import torch
|
33 |
+
>>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
34 |
+
|
35 |
+
>>> converter = AttentionMaskConverter(True)
|
36 |
+
>>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32)
|
37 |
+
tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
38 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
39 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
40 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, -3.4028e+38],
|
41 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, 0.0000e+00]]]])
|
42 |
+
```
|
43 |
+
|
44 |
+
Parameters:
|
45 |
+
is_causal (`bool`):
|
46 |
+
Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
|
47 |
+
|
48 |
+
sliding_window (`int`, *optional*):
|
49 |
+
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
|
50 |
+
"""
|
51 |
+
|
52 |
+
is_causal: bool
|
53 |
+
sliding_window: int
|
54 |
+
|
55 |
+
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
|
56 |
+
self.is_causal = is_causal
|
57 |
+
self.sliding_window = sliding_window
|
58 |
+
|
59 |
+
if self.sliding_window is not None and self.sliding_window <= 0:
|
60 |
+
raise ValueError(
|
61 |
+
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
|
62 |
+
)
|
63 |
+
|
64 |
+
def to_causal_4d(
|
65 |
+
self,
|
66 |
+
batch_size: int,
|
67 |
+
query_length: int,
|
68 |
+
key_value_length: int,
|
69 |
+
dtype: torch.dtype,
|
70 |
+
device: Union[torch.device, "str"] = "cpu",
|
71 |
+
) -> Optional[torch.Tensor]:
|
72 |
+
"""
|
73 |
+
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
|
74 |
+
bias to upper right hand triangular matrix (causal mask).
|
75 |
+
"""
|
76 |
+
if not self.is_causal:
|
77 |
+
raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")
|
78 |
+
|
79 |
+
# If shape is not cached, create a new causal mask and cache it
|
80 |
+
input_shape = (batch_size, query_length)
|
81 |
+
past_key_values_length = key_value_length - query_length
|
82 |
+
|
83 |
+
# create causal mask
|
84 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
85 |
+
causal_4d_mask = None
|
86 |
+
if input_shape[-1] > 1 or self.sliding_window is not None:
|
87 |
+
causal_4d_mask = self._make_causal_mask(
|
88 |
+
input_shape,
|
89 |
+
dtype,
|
90 |
+
device=device,
|
91 |
+
past_key_values_length=past_key_values_length,
|
92 |
+
sliding_window=self.sliding_window,
|
93 |
+
)
|
94 |
+
|
95 |
+
return causal_4d_mask
|
96 |
+
|
97 |
+
def to_4d(
|
98 |
+
self,
|
99 |
+
attention_mask_2d: torch.Tensor,
|
100 |
+
query_length: int,
|
101 |
+
dtype: torch.dtype,
|
102 |
+
key_value_length: Optional[int] = None,
|
103 |
+
) -> torch.Tensor:
|
104 |
+
"""
|
105 |
+
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
|
106 |
+
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
|
107 |
+
causal, a causal mask will be added.
|
108 |
+
"""
|
109 |
+
input_shape = (attention_mask_2d.shape[0], query_length)
|
110 |
+
|
111 |
+
# create causal mask
|
112 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
113 |
+
causal_4d_mask = None
|
114 |
+
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
|
115 |
+
if key_value_length is None:
|
116 |
+
raise ValueError(
|
117 |
+
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
|
118 |
+
)
|
119 |
+
|
120 |
+
past_key_values_length = key_value_length - query_length
|
121 |
+
causal_4d_mask = self._make_causal_mask(
|
122 |
+
input_shape,
|
123 |
+
dtype,
|
124 |
+
device=attention_mask_2d.device,
|
125 |
+
past_key_values_length=past_key_values_length,
|
126 |
+
sliding_window=self.sliding_window,
|
127 |
+
)
|
128 |
+
elif self.sliding_window is not None:
|
129 |
+
raise NotImplementedError("Sliding window is currently only implemented for causal masking")
|
130 |
+
|
131 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
132 |
+
expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
|
133 |
+
attention_mask_2d.device
|
134 |
+
)
|
135 |
+
|
136 |
+
if causal_4d_mask is not None:
|
137 |
+
expanded_attn_mask = causal_4d_mask.masked_fill(expanded_attn_mask.bool(), torch.finfo(dtype).min)
|
138 |
+
|
139 |
+
# expanded_attn_mask + causal_4d_mask can cause some overflow
|
140 |
+
expanded_4d_mask = expanded_attn_mask
|
141 |
+
|
142 |
+
return expanded_4d_mask
|
143 |
+
|
144 |
+
@staticmethod
|
145 |
+
def _make_causal_mask(
|
146 |
+
input_ids_shape: torch.Size,
|
147 |
+
dtype: torch.dtype,
|
148 |
+
device: torch.device,
|
149 |
+
past_key_values_length: int = 0,
|
150 |
+
sliding_window: Optional[int] = None,
|
151 |
+
):
|
152 |
+
"""
|
153 |
+
Make causal mask used for bi-directional self-attention.
|
154 |
+
"""
|
155 |
+
bsz, tgt_len = input_ids_shape
|
156 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
157 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
158 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
159 |
+
|
160 |
+
mask = mask.to(dtype)
|
161 |
+
|
162 |
+
if past_key_values_length > 0:
|
163 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
164 |
+
|
165 |
+
# add lower triangular sliding window mask if necessary
|
166 |
+
if sliding_window is not None:
|
167 |
+
diagonal = past_key_values_length - sliding_window - 1
|
168 |
+
|
169 |
+
context_mask = torch.tril(torch.ones_like(mask, dtype=torch.bool), diagonal=diagonal)
|
170 |
+
mask.masked_fill_(context_mask, torch.finfo(dtype).min)
|
171 |
+
|
172 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
176 |
+
"""
|
177 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
178 |
+
"""
|
179 |
+
bsz, src_len = mask.size()
|
180 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
181 |
+
|
182 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
183 |
+
|
184 |
+
inverted_mask = 1.0 - expanded_mask
|
185 |
+
|
186 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
187 |
+
|
188 |
+
@staticmethod
|
189 |
+
def _unmask_unattended(
|
190 |
+
expanded_mask: torch.FloatTensor,
|
191 |
+
min_dtype: float,
|
192 |
+
):
|
193 |
+
# fmt: off
|
194 |
+
"""
|
195 |
+
Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when
|
196 |
+
using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
197 |
+
Details: https://github.com/pytorch/pytorch/issues/110213
|
198 |
+
|
199 |
+
`expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len].
|
200 |
+
`attention_mask` is [bsz, src_seq_len].
|
201 |
+
|
202 |
+
The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias.
|
203 |
+
|
204 |
+
For example, if `expanded_mask` is (e.g. here left-padding case)
|
205 |
+
```
|
206 |
+
[[[[0, 0, 0],
|
207 |
+
[0, 0, 0],
|
208 |
+
[0, 0, 1]]],
|
209 |
+
[[[1, 0, 0],
|
210 |
+
[1, 1, 0],
|
211 |
+
[1, 1, 1]]],
|
212 |
+
[[[0, 0, 0],
|
213 |
+
[0, 1, 0],
|
214 |
+
[0, 1, 1]]]]
|
215 |
+
```
|
216 |
+
then the modified `expanded_mask` will be
|
217 |
+
```
|
218 |
+
[[[[1, 1, 1], <-- modified
|
219 |
+
[1, 1, 1], <-- modified
|
220 |
+
[0, 0, 1]]],
|
221 |
+
[[[1, 0, 0],
|
222 |
+
[1, 1, 0],
|
223 |
+
[1, 1, 1]]],
|
224 |
+
[[[1, 1, 1], <-- modified
|
225 |
+
[0, 1, 0],
|
226 |
+
[0, 1, 1]]]]
|
227 |
+
```
|
228 |
+
"""
|
229 |
+
# fmt: on
|
230 |
+
if expanded_mask.dtype == torch.bool:
|
231 |
+
raise ValueError(
|
232 |
+
"AttentionMaskConverter._unmask_unattended expects a float `expanded_mask`, got a BoolTensor."
|
233 |
+
)
|
234 |
+
|
235 |
+
return expanded_mask.mul(~torch.all(expanded_mask == min_dtype, dim=-1, keepdim=True))
|
236 |
+
|
237 |
+
@staticmethod
|
238 |
+
def _ignore_causal_mask_sdpa(
|
239 |
+
attention_mask: Optional[torch.Tensor],
|
240 |
+
inputs_embeds: torch.Tensor,
|
241 |
+
past_key_values_length: int,
|
242 |
+
sliding_window: Optional[int] = None,
|
243 |
+
is_training: bool = False,
|
244 |
+
) -> bool:
|
245 |
+
"""
|
246 |
+
Detects whether the optional user-specified attention_mask & the automatically created causal mask can be ignored in case PyTorch's SDPA is used, rather relying on SDPA's `is_causal` argument.
|
247 |
+
|
248 |
+
In case no token is masked in the `attention_mask` argument, if `query_length == 1` or
|
249 |
+
`key_value_length == query_length`, we rather rely on SDPA `is_causal` argument to use causal/non-causal masks,
|
250 |
+
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
|
251 |
+
"""
|
252 |
+
|
253 |
+
_, query_length = inputs_embeds.shape[0], inputs_embeds.shape[1]
|
254 |
+
key_value_length = query_length + past_key_values_length
|
255 |
+
|
256 |
+
is_tracing = (
|
257 |
+
torch.jit.is_tracing()
|
258 |
+
or isinstance(inputs_embeds, torch.fx.Proxy)
|
259 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
260 |
+
)
|
261 |
+
|
262 |
+
ignore_causal_mask = False
|
263 |
+
|
264 |
+
if attention_mask is None:
|
265 |
+
# TODO: When tracing with TorchDynamo with fullgraph=True, the model is recompiled depending on the input shape, thus SDPA's `is_causal` argument is rightfully updated (see https://gist.github.com/fxmarty/1313f39037fc1c112508989628c57363). However, when using `torch.export` or
|
266 |
+
# or `torch.onnx.dynamo_export`, we must pass an example input, and `is_causal` behavior is hard-coded. If a user exports a model with q_len > 1, the exported model will hard-code `is_causal=True` which is in general wrong (see https://github.com/pytorch/pytorch/issues/108108).
|
267 |
+
# Thus, we only set `ignore_causal_mask = True` if the model is set to training.
|
268 |
+
#
|
269 |
+
# Besides, jit.trace can not handle the `q_len > 1` condition for `is_causal` ("TypeError: scaled_dot_product_attention(): argument 'is_causal' must be bool, not Tensor").
|
270 |
+
if (
|
271 |
+
(is_training or not is_tracing)
|
272 |
+
and (query_length == 1 or key_value_length == query_length)
|
273 |
+
and (sliding_window is None or key_value_length < sliding_window)
|
274 |
+
):
|
275 |
+
ignore_causal_mask = True
|
276 |
+
elif sliding_window is None or key_value_length < sliding_window:
|
277 |
+
if len(attention_mask.shape) == 4:
|
278 |
+
return False
|
279 |
+
elif (is_training or not is_tracing) and torch.all(attention_mask == 1):
|
280 |
+
if query_length == 1 or key_value_length == query_length:
|
281 |
+
# For query_length == 1, causal attention and bi-directional attention are the same.
|
282 |
+
ignore_causal_mask = True
|
283 |
+
|
284 |
+
# Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
|
285 |
+
# may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
|
286 |
+
# Reference: https://github.com/pytorch/pytorch/issues/108108
|
287 |
+
# TODO: maybe revisit this with https://github.com/pytorch/pytorch/pull/114823 in PyTorch 2.3.
|
288 |
+
|
289 |
+
return ignore_causal_mask
|
290 |
+
|
291 |
+
|
292 |
+
def _prepare_4d_causal_attention_mask(
|
293 |
+
attention_mask: Optional[torch.Tensor],
|
294 |
+
input_shape: Union[torch.Size, Tuple, List],
|
295 |
+
inputs_embeds: torch.Tensor,
|
296 |
+
past_key_values_length: int,
|
297 |
+
sliding_window: Optional[int] = None,
|
298 |
+
):
|
299 |
+
"""
|
300 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
301 |
+
`(batch_size, key_value_length)`
|
302 |
+
|
303 |
+
Args:
|
304 |
+
attention_mask (`torch.Tensor` or `None`):
|
305 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
306 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
307 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
308 |
+
inputs_embeds (`torch.Tensor`):
|
309 |
+
The embedded inputs as a torch Tensor.
|
310 |
+
past_key_values_length (`int`):
|
311 |
+
The length of the key value cache.
|
312 |
+
sliding_window (`int`, *optional*):
|
313 |
+
If the model uses windowed attention, a sliding window should be passed.
|
314 |
+
"""
|
315 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
316 |
+
|
317 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
318 |
+
|
319 |
+
# 4d mask is passed through the layers
|
320 |
+
if attention_mask is not None and len(attention_mask.shape) == 2:
|
321 |
+
attention_mask = attn_mask_converter.to_4d(
|
322 |
+
attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype
|
323 |
+
)
|
324 |
+
elif attention_mask is not None and len(attention_mask.shape) == 4:
|
325 |
+
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
|
326 |
+
if tuple(attention_mask.shape) != expected_shape:
|
327 |
+
raise ValueError(
|
328 |
+
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
|
329 |
+
)
|
330 |
+
else:
|
331 |
+
# if the 4D mask has correct shape - invert it and fill with negative infinity
|
332 |
+
inverted_mask = 1.0 - attention_mask
|
333 |
+
attention_mask = inverted_mask.masked_fill(
|
334 |
+
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
|
335 |
+
)
|
336 |
+
else:
|
337 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
338 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
339 |
+
)
|
340 |
+
|
341 |
+
return attention_mask
|
342 |
+
|
343 |
+
|
344 |
+
# Adapted from _prepare_4d_causal_attention_mask
|
345 |
+
def _prepare_4d_causal_attention_mask_for_sdpa(
|
346 |
+
attention_mask: Optional[torch.Tensor],
|
347 |
+
input_shape: Union[torch.Size, Tuple, List],
|
348 |
+
inputs_embeds: torch.Tensor,
|
349 |
+
past_key_values_length: int,
|
350 |
+
sliding_window: Optional[int] = None,
|
351 |
+
):
|
352 |
+
"""
|
353 |
+
Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`.
|
354 |
+
|
355 |
+
In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and
|
356 |
+
`key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks,
|
357 |
+
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
|
358 |
+
"""
|
359 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
360 |
+
|
361 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
362 |
+
|
363 |
+
# torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
|
364 |
+
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
|
365 |
+
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
366 |
+
is_tracing = (
|
367 |
+
torch.jit.is_tracing()
|
368 |
+
or isinstance(inputs_embeds, torch.fx.Proxy)
|
369 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
370 |
+
)
|
371 |
+
|
372 |
+
ignore_causal_mask = AttentionMaskConverter._ignore_causal_mask_sdpa(
|
373 |
+
attention_mask=attention_mask,
|
374 |
+
inputs_embeds=inputs_embeds,
|
375 |
+
past_key_values_length=past_key_values_length,
|
376 |
+
sliding_window=sliding_window,
|
377 |
+
)
|
378 |
+
|
379 |
+
if ignore_causal_mask:
|
380 |
+
expanded_4d_mask = None
|
381 |
+
elif attention_mask is None:
|
382 |
+
expanded_4d_mask = attn_mask_converter.to_causal_4d(
|
383 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
384 |
+
)
|
385 |
+
else:
|
386 |
+
if attention_mask.dim() == 4:
|
387 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
388 |
+
if attention_mask.max() != 0:
|
389 |
+
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
390 |
+
expanded_4d_mask = attention_mask
|
391 |
+
else:
|
392 |
+
expanded_4d_mask = attn_mask_converter.to_4d(
|
393 |
+
attention_mask,
|
394 |
+
input_shape[-1],
|
395 |
+
dtype=inputs_embeds.dtype,
|
396 |
+
key_value_length=key_value_length,
|
397 |
+
)
|
398 |
+
|
399 |
+
# Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
|
400 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
401 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
402 |
+
if not is_tracing and expanded_4d_mask.device.type == "cuda":
|
403 |
+
expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
|
404 |
+
expanded_4d_mask, min_dtype=torch.finfo(inputs_embeds.dtype).min
|
405 |
+
)
|
406 |
+
|
407 |
+
return expanded_4d_mask
|
408 |
+
|
409 |
+
|
410 |
+
def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
411 |
+
"""
|
412 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
413 |
+
`(batch_size, key_value_length)`
|
414 |
+
|
415 |
+
Args:
|
416 |
+
mask (`torch.Tensor`):
|
417 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
418 |
+
dtype (`torch.dtype`):
|
419 |
+
The torch dtype the created mask shall have.
|
420 |
+
tgt_len (`int`):
|
421 |
+
The target length or query length the created mask shall have.
|
422 |
+
"""
|
423 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
424 |
+
|
425 |
+
|
426 |
+
def _prepare_4d_attention_mask_for_sdpa(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
427 |
+
"""
|
428 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
429 |
+
`(batch_size, key_value_length)`
|
430 |
+
|
431 |
+
Args:
|
432 |
+
mask (`torch.Tensor`):
|
433 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
434 |
+
dtype (`torch.dtype`):
|
435 |
+
The torch dtype the created mask shall have.
|
436 |
+
tgt_len (`int`):
|
437 |
+
The target length or query length the created mask shall have.
|
438 |
+
"""
|
439 |
+
_, key_value_length = mask.shape
|
440 |
+
tgt_len = tgt_len if tgt_len is not None else key_value_length
|
441 |
+
|
442 |
+
is_tracing = (
|
443 |
+
torch.jit.is_tracing()
|
444 |
+
or isinstance(mask, torch.fx.Proxy)
|
445 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
446 |
+
)
|
447 |
+
|
448 |
+
# torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture data-dependent controlflows.
|
449 |
+
if not is_tracing and torch.all(mask == 1):
|
450 |
+
return None
|
451 |
+
else:
|
452 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
453 |
+
|
454 |
+
|
455 |
+
def _create_4d_causal_attention_mask(
|
456 |
+
input_shape: Union[torch.Size, Tuple, List],
|
457 |
+
dtype: torch.dtype,
|
458 |
+
device: torch.device,
|
459 |
+
past_key_values_length: int = 0,
|
460 |
+
sliding_window: Optional[int] = None,
|
461 |
+
) -> Optional[torch.Tensor]:
|
462 |
+
"""
|
463 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
|
464 |
+
|
465 |
+
Args:
|
466 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
467 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
468 |
+
dtype (`torch.dtype`):
|
469 |
+
The torch dtype the created mask shall have.
|
470 |
+
device (`int`):
|
471 |
+
The torch device the created mask shall have.
|
472 |
+
sliding_window (`int`, *optional*):
|
473 |
+
If the model uses windowed attention, a sliding window should be passed.
|
474 |
+
"""
|
475 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
476 |
+
|
477 |
+
key_value_length = past_key_values_length + input_shape[-1]
|
478 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
479 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
|
480 |
+
)
|
481 |
+
|
482 |
+
return attention_mask
|
transformers_4_44_2__modeling_flash_attention_utils_backward_compat.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
import os
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
from functools import lru_cache
|
25 |
+
import importlib.metadata
|
26 |
+
import importlib.util
|
27 |
+
from packaging import version
|
28 |
+
|
29 |
+
from transformers.utils import is_flash_attn_2_available
|
30 |
+
|
31 |
+
|
32 |
+
if is_flash_attn_2_available():
|
33 |
+
try:
|
34 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
35 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
36 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
37 |
+
except ImportError:
|
38 |
+
raise "Unable to import flash_attn"
|
39 |
+
|
40 |
+
|
41 |
+
def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
|
42 |
+
# Check if the package spec exists and grab its version to avoid importing a local directory
|
43 |
+
package_exists = importlib.util.find_spec(pkg_name) is not None
|
44 |
+
package_version = "N/A"
|
45 |
+
if package_exists:
|
46 |
+
try:
|
47 |
+
# Primary method to get the package version
|
48 |
+
package_version = importlib.metadata.version(pkg_name)
|
49 |
+
except importlib.metadata.PackageNotFoundError:
|
50 |
+
# Fallback method: Only for "torch" and versions containing "dev"
|
51 |
+
if pkg_name == "torch":
|
52 |
+
try:
|
53 |
+
package = importlib.import_module(pkg_name)
|
54 |
+
temp_version = getattr(package, "__version__", "N/A")
|
55 |
+
# Check if the version contains "dev"
|
56 |
+
if "dev" in temp_version:
|
57 |
+
package_version = temp_version
|
58 |
+
package_exists = True
|
59 |
+
else:
|
60 |
+
package_exists = False
|
61 |
+
except ImportError:
|
62 |
+
# If the package can't be imported, it's not available
|
63 |
+
package_exists = False
|
64 |
+
else:
|
65 |
+
# For packages other than "torch", don't attempt the fallback and set as not available
|
66 |
+
package_exists = False
|
67 |
+
if return_version:
|
68 |
+
return package_exists, package_version
|
69 |
+
else:
|
70 |
+
return package_exists
|
71 |
+
|
72 |
+
|
73 |
+
@lru_cache()
|
74 |
+
def is_flash_attn_greater_or_equal(library_version: str):
|
75 |
+
if not _is_package_available("flash_attn"):
|
76 |
+
return False
|
77 |
+
|
78 |
+
return version.parse(importlib.metadata.version("flash_attn")) >= version.parse(library_version)
|
79 |
+
|
80 |
+
|
81 |
+
def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
82 |
+
"""
|
83 |
+
Retrieves indexing data required to repad unpadded (ragged) tensors.
|
84 |
+
|
85 |
+
Arguments:
|
86 |
+
attention_mask (`torch.Tensor`):
|
87 |
+
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
|
88 |
+
|
89 |
+
Return:
|
90 |
+
indices (`torch.Tensor`):
|
91 |
+
The indices of non-masked tokens from the flattened input sequence.
|
92 |
+
cu_seqlens (`torch.Tensor`):
|
93 |
+
The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
|
94 |
+
max_seqlen_in_batch (`int`):
|
95 |
+
Maximum sequence length in batch.
|
96 |
+
"""
|
97 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
98 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
99 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
100 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
101 |
+
return (
|
102 |
+
indices,
|
103 |
+
cu_seqlens,
|
104 |
+
max_seqlen_in_batch,
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
def _upad_input(
|
109 |
+
query_layer: torch.Tensor,
|
110 |
+
key_layer: torch.Tensor,
|
111 |
+
value_layer: torch.Tensor,
|
112 |
+
attention_mask: torch.Tensor,
|
113 |
+
query_length: int,
|
114 |
+
):
|
115 |
+
"""
|
116 |
+
Unpads query, key, and values tensors, using a single dimension for all tokens even though they belong to different batches.
|
117 |
+
|
118 |
+
This function is used instead of `flash_attn.bert_padding.unpad_input` in order to avoid the recomputation of the same intermediary
|
119 |
+
tensors for query, key, value tensors.
|
120 |
+
|
121 |
+
Arguments:
|
122 |
+
query_layer (`torch.Tensor`):
|
123 |
+
Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).
|
124 |
+
key_layer (`torch.Tensor`):
|
125 |
+
Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
|
126 |
+
value_layer (`torch.Tensor`):
|
127 |
+
Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
|
128 |
+
attention_mask (`torch.Tensor`):
|
129 |
+
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
|
130 |
+
query_length (`int`):
|
131 |
+
Target length.
|
132 |
+
|
133 |
+
Return:
|
134 |
+
query_layer (`torch.Tensor`):
|
135 |
+
Query state without padding. Shape: (total_target_length, num_heads, head_dim).
|
136 |
+
key_layer (`torch.Tensor`):
|
137 |
+
Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
|
138 |
+
value_layer (`torch.Tensor`):
|
139 |
+
Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
|
140 |
+
indices_q (`torch.Tensor`):
|
141 |
+
The indices of non-masked tokens from the flattened input target sequence.
|
142 |
+
(cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):
|
143 |
+
The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
|
144 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):
|
145 |
+
Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).
|
146 |
+
"""
|
147 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
148 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
149 |
+
|
150 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k)
|
151 |
+
value_layer = index_first_axis(
|
152 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
153 |
+
)
|
154 |
+
if query_length == kv_seq_len:
|
155 |
+
query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), indices_k)
|
156 |
+
cu_seqlens_q = cu_seqlens_k
|
157 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
158 |
+
indices_q = indices_k
|
159 |
+
elif query_length == 1:
|
160 |
+
max_seqlen_in_batch_q = 1
|
161 |
+
cu_seqlens_q = torch.arange(
|
162 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
163 |
+
) # There is a memcpy here, that is very bad.
|
164 |
+
indices_q = cu_seqlens_q[:-1]
|
165 |
+
query_layer = query_layer.squeeze(1)
|
166 |
+
else:
|
167 |
+
# The -q_len: slice assumes left padding.
|
168 |
+
attention_mask = attention_mask[:, -query_length:]
|
169 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
170 |
+
|
171 |
+
return (
|
172 |
+
query_layer,
|
173 |
+
key_layer,
|
174 |
+
value_layer,
|
175 |
+
indices_q,
|
176 |
+
(cu_seqlens_q, cu_seqlens_k),
|
177 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
178 |
+
)
|
179 |
+
|
180 |
+
|
181 |
+
def prepare_fa2_from_position_ids(query, key, value, position_ids):
|
182 |
+
"""
|
183 |
+
This function returns necessary arguments to call `flash_attn_varlen_func`.
|
184 |
+
All three query, key, value states will be flattened.
|
185 |
+
Cummulative lengths of each examples in the batch will be extracted from position_ids.
|
186 |
+
|
187 |
+
NOTE: ideally cummulative lengths should be prepared at the data collator stage
|
188 |
+
|
189 |
+
Arguments:
|
190 |
+
query (`torch.Tensor`):
|
191 |
+
Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).
|
192 |
+
key (`torch.Tensor`):
|
193 |
+
Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
|
194 |
+
value (`torch.Tensor`):
|
195 |
+
Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
|
196 |
+
position_ids (`torch.Tensor`):
|
197 |
+
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
|
198 |
+
|
199 |
+
Return:
|
200 |
+
query (`torch.Tensor`):
|
201 |
+
Query state without padding. Shape: (total_target_length, num_heads, head_dim).
|
202 |
+
key (`torch.Tensor`):
|
203 |
+
Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
|
204 |
+
value (`torch.Tensor`):
|
205 |
+
Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
|
206 |
+
indices_q (`torch.Tensor`):
|
207 |
+
The indices of non-masked tokens from the flattened input target sequence.
|
208 |
+
(cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):
|
209 |
+
The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
|
210 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):
|
211 |
+
Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).
|
212 |
+
"""
|
213 |
+
query = query.view(-1, query.size(-2), query.size(-1))
|
214 |
+
key = key.view(-1, key.size(-2), key.size(-1))
|
215 |
+
value = value.view(-1, value.size(-2), value.size(-1))
|
216 |
+
position_ids = position_ids.flatten()
|
217 |
+
indices_q = torch.arange(position_ids.size(0), device=position_ids.device, dtype=torch.int32)
|
218 |
+
|
219 |
+
cu_seq_lens = torch.cat(
|
220 |
+
(
|
221 |
+
indices_q[position_ids == 0],
|
222 |
+
torch.tensor(position_ids.size(), device=position_ids.device, dtype=torch.int32),
|
223 |
+
)
|
224 |
+
)
|
225 |
+
|
226 |
+
max_length = position_ids.max() + 1
|
227 |
+
|
228 |
+
return (query, key, value, indices_q, (cu_seq_lens, cu_seq_lens), (max_length, max_length))
|
229 |
+
|
230 |
+
|
231 |
+
def _flash_attention_forward(
|
232 |
+
query_states: torch.Tensor,
|
233 |
+
key_states: torch.Tensor,
|
234 |
+
value_states: torch.Tensor,
|
235 |
+
attention_mask: torch.Tensor,
|
236 |
+
query_length: int,
|
237 |
+
is_causal: bool,
|
238 |
+
dropout: float = 0.0,
|
239 |
+
position_ids: Optional[torch.Tensor] = None,
|
240 |
+
softmax_scale: Optional[float] = None,
|
241 |
+
sliding_window: Optional[int] = None,
|
242 |
+
use_top_left_mask: bool = False,
|
243 |
+
softcap: Optional[float] = None,
|
244 |
+
deterministic: bool = None,
|
245 |
+
):
|
246 |
+
"""
|
247 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
248 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
query_states (`torch.Tensor`):
|
252 |
+
Input query states to be passed to Flash Attention API
|
253 |
+
key_states (`torch.Tensor`):
|
254 |
+
Input key states to be passed to Flash Attention API
|
255 |
+
value_states (`torch.Tensor`):
|
256 |
+
Input value states to be passed to Flash Attention API
|
257 |
+
attention_mask (`torch.Tensor`):
|
258 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
259 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
260 |
+
dropout (`float`):
|
261 |
+
Attention dropout
|
262 |
+
softmax_scale (`float`, *optional*):
|
263 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
264 |
+
use_top_left_mask (`bool`, defaults to `False`):
|
265 |
+
flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
|
266 |
+
softcap (`float`, *optional*):
|
267 |
+
Softcap for the attention logits, used e.g. in gemma2.
|
268 |
+
deterministic (`bool`, *optional*):
|
269 |
+
Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled.
|
270 |
+
"""
|
271 |
+
if not use_top_left_mask:
|
272 |
+
causal = is_causal
|
273 |
+
else:
|
274 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__.
|
275 |
+
causal = is_causal and query_length != 1
|
276 |
+
|
277 |
+
# Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
|
278 |
+
use_sliding_windows = (
|
279 |
+
_flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window
|
280 |
+
)
|
281 |
+
flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {}
|
282 |
+
|
283 |
+
if is_flash_attn_greater_or_equal("2.4.1"):
|
284 |
+
if deterministic is None:
|
285 |
+
deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1"
|
286 |
+
flash_kwargs["deterministic"] = deterministic
|
287 |
+
|
288 |
+
if softcap is not None:
|
289 |
+
flash_kwargs["softcap"] = softcap
|
290 |
+
|
291 |
+
# Contains at least one padding token in the sequence
|
292 |
+
if attention_mask is not None:
|
293 |
+
batch_size = query_states.shape[0]
|
294 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input(
|
295 |
+
query_states, key_states, value_states, attention_mask, query_length
|
296 |
+
)
|
297 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
298 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
299 |
+
|
300 |
+
attn_output_unpad = flash_attn_varlen_func(
|
301 |
+
query_states,
|
302 |
+
key_states,
|
303 |
+
value_states,
|
304 |
+
cu_seqlens_q=cu_seqlens_q,
|
305 |
+
cu_seqlens_k=cu_seqlens_k,
|
306 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
307 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
308 |
+
dropout_p=dropout,
|
309 |
+
softmax_scale=softmax_scale,
|
310 |
+
causal=causal,
|
311 |
+
**flash_kwargs,
|
312 |
+
)
|
313 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
314 |
+
|
315 |
+
# If position_ids is provided and check all examples do not contain only 1 sequence, If tensor in increasing
|
316 |
+
# then we probably have one sequence, otherwise it is packed. Additionally check we are in pre-fill/training stage.
|
317 |
+
# Use `flash_attn_varlen_func` to prevent cross-example attention and also allow padding free approach
|
318 |
+
elif position_ids is not None and query_length != 1 and not (torch.diff(position_ids, dim=-1) >= 0).all():
|
319 |
+
batch_size = query_states.size(0)
|
320 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = prepare_fa2_from_position_ids(
|
321 |
+
query_states, key_states, value_states, position_ids
|
322 |
+
)
|
323 |
+
|
324 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
325 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
326 |
+
|
327 |
+
attn_output = flash_attn_varlen_func(
|
328 |
+
query_states,
|
329 |
+
key_states,
|
330 |
+
value_states,
|
331 |
+
cu_seqlens_q=cu_seqlens_q,
|
332 |
+
cu_seqlens_k=cu_seqlens_k,
|
333 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
334 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
335 |
+
dropout_p=dropout,
|
336 |
+
softmax_scale=softmax_scale,
|
337 |
+
causal=causal,
|
338 |
+
**flash_kwargs,
|
339 |
+
)
|
340 |
+
|
341 |
+
attn_output = attn_output.view(batch_size, -1, attn_output.size(-2), attn_output.size(-1))
|
342 |
+
|
343 |
+
else:
|
344 |
+
attn_output = flash_attn_func(
|
345 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs
|
346 |
+
)
|
347 |
+
|
348 |
+
return attn_output
|
transformers_4_44_2__modeling_outputs.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
transformers_4_44_2__modeling_rope_utils.py
ADDED
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import is_torch_available, logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
if is_torch_available():
|
26 |
+
import torch
|
27 |
+
|
28 |
+
|
29 |
+
def _compute_default_rope_parameters(
|
30 |
+
config: Optional[PretrainedConfig] = None,
|
31 |
+
device: Optional["torch.device"] = None,
|
32 |
+
seq_len: Optional[int] = None,
|
33 |
+
**rope_kwargs,
|
34 |
+
) -> Tuple["torch.Tensor", float]:
|
35 |
+
"""
|
36 |
+
Computes the inverse frequencies according to the original RoPE implementation
|
37 |
+
Args:
|
38 |
+
config ([`~transformers.PretrainedConfig`]):
|
39 |
+
The model configuration.
|
40 |
+
device (`torch.device`):
|
41 |
+
The device to use for initialization of the inverse frequencies.
|
42 |
+
seq_len (`int`, *optional*):
|
43 |
+
The current sequence length. Unused for this type of RoPE.
|
44 |
+
rope_kwargs (`Dict`, *optional*):
|
45 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
46 |
+
Returns:
|
47 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
48 |
+
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
|
49 |
+
"""
|
50 |
+
if config is not None and len(rope_kwargs) > 0:
|
51 |
+
raise ValueError(
|
52 |
+
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
|
53 |
+
f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
|
54 |
+
)
|
55 |
+
if len(rope_kwargs) > 0:
|
56 |
+
base = rope_kwargs["base"]
|
57 |
+
dim = rope_kwargs["dim"]
|
58 |
+
elif config is not None:
|
59 |
+
base = config.rope_theta
|
60 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
61 |
+
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
62 |
+
dim = int(head_dim * partial_rotary_factor)
|
63 |
+
|
64 |
+
attention_factor = 1.0 # Unused in this type of RoPE
|
65 |
+
|
66 |
+
# Compute the inverse frequencies
|
67 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
|
68 |
+
return inv_freq, attention_factor
|
69 |
+
|
70 |
+
|
71 |
+
def _compute_linear_scaling_rope_parameters(
|
72 |
+
config: Optional[PretrainedConfig] = None,
|
73 |
+
device: Optional["torch.device"] = None,
|
74 |
+
seq_len: Optional[int] = None,
|
75 |
+
**rope_kwargs,
|
76 |
+
) -> Tuple["torch.Tensor", float]:
|
77 |
+
"""
|
78 |
+
Computes the inverse frequencies with linear scaling. Credits to the Reddit user /u/kaiokendev
|
79 |
+
Args:
|
80 |
+
config ([`~transformers.PretrainedConfig`]):
|
81 |
+
The model configuration.
|
82 |
+
device (`torch.device`):
|
83 |
+
The device to use for initialization of the inverse frequencies.
|
84 |
+
seq_len (`int`, *optional*):
|
85 |
+
The current sequence length. Unused for this type of RoPE.
|
86 |
+
rope_kwargs (`Dict`, *optional*):
|
87 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
88 |
+
Returns:
|
89 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
90 |
+
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
|
91 |
+
"""
|
92 |
+
if config is not None and len(rope_kwargs) > 0:
|
93 |
+
raise ValueError(
|
94 |
+
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
|
95 |
+
f"`_compute_linear_scaling_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
|
96 |
+
)
|
97 |
+
if len(rope_kwargs) > 0:
|
98 |
+
factor = rope_kwargs["factor"]
|
99 |
+
elif config is not None:
|
100 |
+
factor = config.rope_scaling["factor"]
|
101 |
+
|
102 |
+
# Gets the default RoPE parameters
|
103 |
+
inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
|
104 |
+
|
105 |
+
# Then applies linear scaling to the frequencies.
|
106 |
+
# NOTE: originally, scaling was applied to the position_ids. However, we get `embs = inv_freq @ position_ids`, so
|
107 |
+
# applying scaling to the inverse frequencies is equivalent.
|
108 |
+
inv_freq /= factor
|
109 |
+
return inv_freq, attention_factor
|
110 |
+
|
111 |
+
|
112 |
+
def _compute_dynamic_ntk_parameters(
|
113 |
+
config: Optional[PretrainedConfig] = None,
|
114 |
+
device: Optional["torch.device"] = None,
|
115 |
+
seq_len: Optional[int] = None,
|
116 |
+
**rope_kwargs,
|
117 |
+
) -> Tuple["torch.Tensor", float]:
|
118 |
+
"""
|
119 |
+
Computes the inverse frequencies with NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
|
120 |
+
Args:
|
121 |
+
config ([`~transformers.PretrainedConfig`]):
|
122 |
+
The model configuration.
|
123 |
+
device (`torch.device`):
|
124 |
+
The device to use for initialization of the inverse frequencies.
|
125 |
+
seq_len (`int`, *optional*):
|
126 |
+
The current sequence length, used to update the dynamic RoPE at inference time.
|
127 |
+
rope_kwargs (`Dict`, *optional*):
|
128 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
129 |
+
Returns:
|
130 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
131 |
+
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
|
132 |
+
"""
|
133 |
+
# TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
|
134 |
+
if config is not None and len(rope_kwargs) > 0:
|
135 |
+
raise ValueError(
|
136 |
+
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
|
137 |
+
f"`_compute_dynamic_ntk_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
|
138 |
+
)
|
139 |
+
if len(rope_kwargs) > 0:
|
140 |
+
base = rope_kwargs["base"]
|
141 |
+
dim = rope_kwargs["dim"]
|
142 |
+
max_position_embeddings = rope_kwargs["max_position_embeddings"]
|
143 |
+
factor = rope_kwargs["factor"]
|
144 |
+
elif config is not None:
|
145 |
+
base = config.rope_theta
|
146 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
147 |
+
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
148 |
+
dim = int(head_dim * partial_rotary_factor)
|
149 |
+
max_position_embeddings = config.max_position_embeddings
|
150 |
+
factor = config.rope_scaling["factor"]
|
151 |
+
|
152 |
+
attention_factor = 1.0 # Unused in this type of RoPE
|
153 |
+
|
154 |
+
# seq_len: default to max_position_embeddings, e.g. at init time
|
155 |
+
seq_len = seq_len if seq_len is not None and seq_len > max_position_embeddings else max_position_embeddings
|
156 |
+
|
157 |
+
# Compute the inverse frequencies
|
158 |
+
base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2))
|
159 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
|
160 |
+
return inv_freq, attention_factor
|
161 |
+
|
162 |
+
|
163 |
+
def _compute_yarn_parameters(
|
164 |
+
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
|
165 |
+
) -> Tuple["torch.Tensor", float]:
|
166 |
+
"""
|
167 |
+
Computes the inverse frequencies with NTK scaling. Please refer to the
|
168 |
+
[original paper](https://arxiv.org/abs/2309.00071)
|
169 |
+
Args:
|
170 |
+
config ([`~transformers.PretrainedConfig`]):
|
171 |
+
The model configuration.
|
172 |
+
device (`torch.device`):
|
173 |
+
The device to use for initialization of the inverse frequencies.
|
174 |
+
seq_len (`int`, *optional*):
|
175 |
+
The current sequence length. Unused for this type of RoPE.
|
176 |
+
rope_kwargs (`Dict`, *optional*):
|
177 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
178 |
+
Returns:
|
179 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
180 |
+
post-processing scaling factor applied to the computed cos/sin.
|
181 |
+
"""
|
182 |
+
# No need to keep BC with yarn, unreleased when this new pattern was created.
|
183 |
+
if len(rope_kwargs) > 0:
|
184 |
+
raise ValueError(
|
185 |
+
f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}"
|
186 |
+
)
|
187 |
+
|
188 |
+
base = config.rope_theta
|
189 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
190 |
+
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
191 |
+
dim = int(head_dim * partial_rotary_factor)
|
192 |
+
max_position_embeddings = config.max_position_embeddings
|
193 |
+
factor = config.rope_scaling["factor"]
|
194 |
+
|
195 |
+
# Sets the attention factor as suggested in the paper
|
196 |
+
attention_factor = config.rope_scaling.get("attention_factor")
|
197 |
+
if attention_factor is None:
|
198 |
+
attention_factor = 0.1 * math.log(factor) + 1.0
|
199 |
+
|
200 |
+
# Optional config options
|
201 |
+
# beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
|
202 |
+
beta_fast = config.rope_scaling.get("beta_fast") or 32
|
203 |
+
beta_slow = config.rope_scaling.get("beta_slow") or 1
|
204 |
+
|
205 |
+
# Compute the inverse frequencies
|
206 |
+
def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
|
207 |
+
"""Inverse dimension formula to find the dimension based on the number of rotations"""
|
208 |
+
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
|
209 |
+
|
210 |
+
def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
|
211 |
+
"""Find dimension range bounds based on rotations"""
|
212 |
+
low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
|
213 |
+
high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
|
214 |
+
return max(low, 0), min(high, dim - 1)
|
215 |
+
|
216 |
+
def linear_ramp_factor(min, max, dim):
|
217 |
+
if min == max:
|
218 |
+
max += 0.001 # Prevent singularity
|
219 |
+
|
220 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
221 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
222 |
+
return ramp_func
|
223 |
+
|
224 |
+
# Note on variable naming: "interpolation" comes from the original technique, where we interpolate the position IDs
|
225 |
+
# to expand the possible context length. In other words, interpolation = apply scaling factor.
|
226 |
+
pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
|
227 |
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
228 |
+
inv_freq_interpolation = 1.0 / (factor * pos_freqs)
|
229 |
+
|
230 |
+
low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)
|
231 |
+
|
232 |
+
# Get n-dimensional rotational scaling corrected for extrapolation
|
233 |
+
inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device)
|
234 |
+
inv_freq = (
|
235 |
+
inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
|
236 |
+
+ inv_freq_extrapolation * inv_freq_extrapolation_factor
|
237 |
+
)
|
238 |
+
|
239 |
+
return inv_freq, attention_factor
|
240 |
+
|
241 |
+
|
242 |
+
def _compute_longrope_parameters(
|
243 |
+
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
|
244 |
+
) -> Tuple["torch.Tensor", float]:
|
245 |
+
"""
|
246 |
+
Computes the inverse frequencies with LongRoPE scaling. Please refer to the
|
247 |
+
[original implementation](https://github.com/microsoft/LongRoPE)
|
248 |
+
Args:
|
249 |
+
config ([`~transformers.PretrainedConfig`]):
|
250 |
+
The model configuration.
|
251 |
+
device (`torch.device`):
|
252 |
+
The device to use for initialization of the inverse frequencies.
|
253 |
+
seq_len (`int`, *optional*):
|
254 |
+
The current sequence length. Unused for this type of RoPE.
|
255 |
+
rope_kwargs (`Dict`, *optional*):
|
256 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
257 |
+
Returns:
|
258 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
259 |
+
post-processing scaling factor applied to the computed cos/sin.
|
260 |
+
"""
|
261 |
+
# TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
|
262 |
+
# No need to keep BC with longrope, unreleased when this new pattern was created.
|
263 |
+
if len(rope_kwargs) > 0:
|
264 |
+
raise ValueError(
|
265 |
+
"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_longrope_parameters`, got "
|
266 |
+
f"{rope_kwargs}"
|
267 |
+
)
|
268 |
+
|
269 |
+
base = config.rope_theta
|
270 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
271 |
+
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
272 |
+
dim = int(head_dim * partial_rotary_factor)
|
273 |
+
long_factor = config.rope_scaling["long_factor"]
|
274 |
+
short_factor = config.rope_scaling["short_factor"]
|
275 |
+
factor = config.rope_scaling.get("factor")
|
276 |
+
attention_factor = config.rope_scaling.get("attention_factor")
|
277 |
+
|
278 |
+
# NOTE: Phi3 (and potentially other models) modify `max_position_embeddings` and have a
|
279 |
+
# `original_max_position_embeddings` field containing the pretrained value. They use the ratio between these two
|
280 |
+
# values to compute the default attention scaling factor, instead of using `factor`.
|
281 |
+
if hasattr(config, "original_max_position_embeddings"):
|
282 |
+
max_position_embeddings = config.original_max_position_embeddings
|
283 |
+
expanded_max_position_embeddings = config.max_position_embeddings
|
284 |
+
factor = expanded_max_position_embeddings / max_position_embeddings
|
285 |
+
else:
|
286 |
+
max_position_embeddings = config.max_position_embeddings
|
287 |
+
expanded_max_position_embeddings = max_position_embeddings * factor
|
288 |
+
|
289 |
+
# Sets the attention factor as suggested in the paper
|
290 |
+
if attention_factor is None:
|
291 |
+
if factor <= 1.0:
|
292 |
+
attention_factor = 1.0
|
293 |
+
else:
|
294 |
+
attention_factor = math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings))
|
295 |
+
|
296 |
+
# Compute the inverse frequencies -- scaled based on the target sequence length
|
297 |
+
if expanded_max_position_embeddings > max_position_embeddings:
|
298 |
+
ext_factors = torch.tensor(long_factor, dtype=torch.float32, device=device)
|
299 |
+
else:
|
300 |
+
ext_factors = torch.tensor(short_factor, dtype=torch.float32, device=device)
|
301 |
+
inv_freq_shape = torch.arange(0, dim, 2, dtype=torch.int64, device=device).float() / dim
|
302 |
+
inv_freq = 1.0 / (ext_factors * base**inv_freq_shape)
|
303 |
+
|
304 |
+
return inv_freq, attention_factor
|
305 |
+
|
306 |
+
|
307 |
+
def _compute_llama3_parameters(
|
308 |
+
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
|
309 |
+
) -> Tuple["torch.Tensor", float]:
|
310 |
+
"""
|
311 |
+
Computes the inverse frequencies for llama 3.1.
|
312 |
+
|
313 |
+
Args:
|
314 |
+
config ([`~transformers.PretrainedConfig`]):
|
315 |
+
The model configuration.
|
316 |
+
device (`torch.device`):
|
317 |
+
The device to use for initialization of the inverse frequencies.
|
318 |
+
seq_len (`int`, *optional*):
|
319 |
+
The current sequence length. Unused for this type of RoPE.
|
320 |
+
rope_kwargs (`Dict`, *optional*):
|
321 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
322 |
+
Returns:
|
323 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
324 |
+
post-processing scaling factor applied to the computed cos/sin.
|
325 |
+
"""
|
326 |
+
# Gets the default RoPE parameters
|
327 |
+
inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
|
328 |
+
|
329 |
+
factor = config.rope_scaling["factor"] # `8` in the original implementation
|
330 |
+
low_freq_factor = config.rope_scaling["low_freq_factor"] # `1` in the original implementation
|
331 |
+
high_freq_factor = config.rope_scaling["high_freq_factor"] # `4` in the original implementation
|
332 |
+
old_context_len = config.rope_scaling["original_max_position_embeddings"] # `8192` in the original implementation
|
333 |
+
|
334 |
+
low_freq_wavelen = old_context_len / low_freq_factor
|
335 |
+
high_freq_wavelen = old_context_len / high_freq_factor
|
336 |
+
|
337 |
+
wavelen = 2 * math.pi / inv_freq
|
338 |
+
# wavelen < high_freq_wavelen: do nothing
|
339 |
+
# wavelen > low_freq_wavelen: divide by factor
|
340 |
+
inv_freq_llama = torch.where(wavelen > low_freq_wavelen, inv_freq / factor, inv_freq)
|
341 |
+
# otherwise: interpolate between the two, using a smooth factor
|
342 |
+
smooth_factor = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
343 |
+
smoothed_inv_freq = (1 - smooth_factor) * inv_freq_llama / factor + smooth_factor * inv_freq_llama
|
344 |
+
is_medium_freq = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen)
|
345 |
+
inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
|
346 |
+
|
347 |
+
return inv_freq_llama, attention_factor
|
348 |
+
|
349 |
+
|
350 |
+
# This maps the "rope_type" string field in rope config to the corresponding function to compute the RoPE parameters
|
351 |
+
# from the model config. You can append new {'rope_type': callable} pairs to this dictionary to enable custom RoPE
|
352 |
+
# parameterizations, as long as the callable has the same signature.
|
353 |
+
ROPE_INIT_FUNCTIONS = {
|
354 |
+
"default": _compute_default_rope_parameters,
|
355 |
+
"linear": _compute_linear_scaling_rope_parameters,
|
356 |
+
"dynamic": _compute_dynamic_ntk_parameters,
|
357 |
+
"yarn": _compute_yarn_parameters,
|
358 |
+
"longrope": _compute_longrope_parameters,
|
359 |
+
"llama3": _compute_llama3_parameters,
|
360 |
+
}
|
361 |
+
|
362 |
+
|
363 |
+
def _check_received_keys(rope_type: str, received_keys: set, required_keys: set, optional_keys: Optional[set] = None):
|
364 |
+
"""Compare the received keys in `config.rope_scaling` against the expected and optional keys"""
|
365 |
+
# BC: "rope_type" was originally "type" -- let's gracefully handle it
|
366 |
+
if "rope_type" not in received_keys and "type" in received_keys:
|
367 |
+
received_keys -= {"type"}
|
368 |
+
received_keys.add("rope_type")
|
369 |
+
|
370 |
+
missing_keys = required_keys - received_keys
|
371 |
+
if missing_keys:
|
372 |
+
raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}")
|
373 |
+
|
374 |
+
if optional_keys is not None:
|
375 |
+
unused_keys = received_keys - required_keys - optional_keys
|
376 |
+
else:
|
377 |
+
unused_keys = received_keys - required_keys
|
378 |
+
if unused_keys:
|
379 |
+
logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}")
|
380 |
+
|
381 |
+
|
382 |
+
def _validate_default_rope_parameters(config: PretrainedConfig):
|
383 |
+
rope_scaling = config.rope_scaling
|
384 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
385 |
+
required_keys = {"rope_type"}
|
386 |
+
received_keys = set(rope_scaling.keys())
|
387 |
+
_check_received_keys(rope_type, received_keys, required_keys)
|
388 |
+
|
389 |
+
|
390 |
+
def _validate_linear_scaling_rope_parameters(config: PretrainedConfig):
|
391 |
+
rope_scaling = config.rope_scaling
|
392 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
393 |
+
required_keys = {"rope_type", "factor"}
|
394 |
+
received_keys = set(rope_scaling.keys())
|
395 |
+
_check_received_keys(rope_type, received_keys, required_keys)
|
396 |
+
|
397 |
+
factor = rope_scaling["factor"]
|
398 |
+
if factor is None or not isinstance(factor, float) or factor < 1.0:
|
399 |
+
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
|
400 |
+
|
401 |
+
|
402 |
+
def _validate_dynamic_scaling_rope_parameters(config: PretrainedConfig):
|
403 |
+
rope_scaling = config.rope_scaling
|
404 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
405 |
+
required_keys = {"rope_type", "factor"}
|
406 |
+
# TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
|
407 |
+
optional_keys = {"original_max_position_embeddings"}
|
408 |
+
received_keys = set(rope_scaling.keys())
|
409 |
+
_check_received_keys(rope_type, received_keys, required_keys, optional_keys)
|
410 |
+
|
411 |
+
factor = rope_scaling["factor"]
|
412 |
+
if factor is None or not isinstance(factor, float) or factor < 1.0:
|
413 |
+
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
|
414 |
+
|
415 |
+
|
416 |
+
def _validate_yarn_parameters(config: PretrainedConfig):
|
417 |
+
rope_scaling = config.rope_scaling
|
418 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
419 |
+
required_keys = {"rope_type", "factor"}
|
420 |
+
optional_keys = {"attention_factor", "beta_fast", "beta_slow"}
|
421 |
+
received_keys = set(rope_scaling.keys())
|
422 |
+
_check_received_keys(rope_type, received_keys, required_keys, optional_keys)
|
423 |
+
|
424 |
+
factor = rope_scaling["factor"]
|
425 |
+
if factor is None or not isinstance(factor, float) or factor < 1.0:
|
426 |
+
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
|
427 |
+
|
428 |
+
attention_factor = rope_scaling.get("attention_factor")
|
429 |
+
if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0):
|
430 |
+
logger.warning(
|
431 |
+
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
|
432 |
+
)
|
433 |
+
beta_fast = rope_scaling.get("beta_fast")
|
434 |
+
if beta_fast is not None and not isinstance(beta_fast, float):
|
435 |
+
logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
|
436 |
+
beta_slow = rope_scaling.get("beta_slow")
|
437 |
+
if beta_slow is not None and not isinstance(beta_slow, float):
|
438 |
+
logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}")
|
439 |
+
|
440 |
+
if (beta_fast or 32) < (beta_slow or 1):
|
441 |
+
logger.warning(
|
442 |
+
f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
|
443 |
+
f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
|
444 |
+
)
|
445 |
+
|
446 |
+
|
447 |
+
def _validate_longrope_parameters(config: PretrainedConfig):
|
448 |
+
rope_scaling = config.rope_scaling
|
449 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
450 |
+
required_keys = {"rope_type", "short_factor", "long_factor"}
|
451 |
+
# TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
|
452 |
+
optional_keys = {"attention_factor", "factor", "original_max_position_embeddings"}
|
453 |
+
received_keys = set(rope_scaling.keys())
|
454 |
+
_check_received_keys(rope_type, received_keys, required_keys, optional_keys)
|
455 |
+
|
456 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
457 |
+
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
458 |
+
dim = int(head_dim * partial_rotary_factor)
|
459 |
+
|
460 |
+
short_factor = rope_scaling.get("short_factor")
|
461 |
+
if not isinstance(short_factor, list) and all(isinstance(x, (int, float)) for x in short_factor):
|
462 |
+
logger.warning(f"`rope_scaling`'s short_factor field must be a list of numbers, got {short_factor}")
|
463 |
+
if not len(short_factor) == dim // 2:
|
464 |
+
logger.warning(f"`rope_scaling`'s short_factor field must have length {dim // 2}, got {len(short_factor)}")
|
465 |
+
|
466 |
+
long_factor = rope_scaling.get("long_factor")
|
467 |
+
if not isinstance(long_factor, list) and all(isinstance(x, (int, float)) for x in long_factor):
|
468 |
+
logger.warning(f"`rope_scaling`'s long_factor field must be a list of numbers, got {long_factor}")
|
469 |
+
if not len(long_factor) == dim // 2:
|
470 |
+
logger.warning(f"`rope_scaling`'s long_factor field must have length {dim // 2}, got {len(long_factor)}")
|
471 |
+
|
472 |
+
# Handle Phi3 divergence: prefer the use of `attention_factor` and/or `factor` over
|
473 |
+
# `original_max_position_embeddings` to compute internal variables. The latter lives outside `rope_scaling` and is
|
474 |
+
# unique to longrope (= undesirable)
|
475 |
+
if hasattr(config, "original_max_position_embeddings"):
|
476 |
+
logger.warning_once(
|
477 |
+
"This model has set a `original_max_position_embeddings` field, to be used together with "
|
478 |
+
"`max_position_embeddings` to determine a scaling factor. Please set the `factor` field of `rope_scaling`"
|
479 |
+
"with this ratio instead -- we recommend the use of this field over `original_max_position_embeddings`, "
|
480 |
+
"as it is compatible with most model architectures."
|
481 |
+
)
|
482 |
+
else:
|
483 |
+
factor = rope_scaling.get("factor")
|
484 |
+
if factor is None:
|
485 |
+
logger.warning("Missing required keys in `rope_scaling`: 'factor'")
|
486 |
+
elif not isinstance(factor, float) or factor < 1.0:
|
487 |
+
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
|
488 |
+
|
489 |
+
attention_factor = rope_scaling.get("attention_factor")
|
490 |
+
if attention_factor is not None and not isinstance(attention_factor, float) or attention_factor < 0:
|
491 |
+
logger.warning(
|
492 |
+
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
|
493 |
+
)
|
494 |
+
|
495 |
+
|
496 |
+
def _validate_llama3_parameters(config: PretrainedConfig):
|
497 |
+
rope_scaling = config.rope_scaling
|
498 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
499 |
+
required_keys = {"rope_type", "factor", "original_max_position_embeddings", "low_freq_factor", "high_freq_factor"}
|
500 |
+
received_keys = set(rope_scaling.keys())
|
501 |
+
_check_received_keys(rope_type, received_keys, required_keys)
|
502 |
+
|
503 |
+
factor = rope_scaling["factor"]
|
504 |
+
if factor is None or not isinstance(factor, float) or factor < 1.0:
|
505 |
+
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
|
506 |
+
|
507 |
+
low_freq_factor = rope_scaling["low_freq_factor"]
|
508 |
+
high_freq_factor = rope_scaling["high_freq_factor"]
|
509 |
+
if low_freq_factor is None or not isinstance(low_freq_factor, float):
|
510 |
+
logger.warning(f"`rope_scaling`'s low_freq_factor field must be a float, got {low_freq_factor}")
|
511 |
+
if high_freq_factor is None or not isinstance(high_freq_factor, float):
|
512 |
+
logger.warning(f"`rope_scaling`'s high_freq_factor field must be a float, got {high_freq_factor}")
|
513 |
+
if high_freq_factor <= low_freq_factor:
|
514 |
+
logger.warning(
|
515 |
+
"`rope_scaling`'s high_freq_factor field must be greater than low_freq_factor, got high_freq_factor="
|
516 |
+
f"{high_freq_factor} and low_freq_factor={low_freq_factor}"
|
517 |
+
)
|
518 |
+
|
519 |
+
original_max_position_embeddings = rope_scaling["original_max_position_embeddings"]
|
520 |
+
if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
|
521 |
+
logger.warning(
|
522 |
+
"`rope_scaling`'s original_max_position_embeddings field must be an integer, got "
|
523 |
+
f"{original_max_position_embeddings}"
|
524 |
+
)
|
525 |
+
if original_max_position_embeddings >= config.max_position_embeddings:
|
526 |
+
logger.warning(
|
527 |
+
"`rope_scaling`'s original_max_position_embeddings field must be less than max_position_embeddings, got "
|
528 |
+
f"{original_max_position_embeddings} and max_position_embeddings={config.max_position_embeddings}"
|
529 |
+
)
|
530 |
+
|
531 |
+
|
532 |
+
# Like `ROPE_INIT_FUNCTIONS`, this validation function mapping can be dynamically updated for custom RoPE types.
|
533 |
+
ROPE_VALIDATION_FUNCTIONS = {
|
534 |
+
"default": _validate_default_rope_parameters,
|
535 |
+
"linear": _validate_linear_scaling_rope_parameters,
|
536 |
+
"dynamic": _validate_dynamic_scaling_rope_parameters,
|
537 |
+
"yarn": _validate_yarn_parameters,
|
538 |
+
"longrope": _validate_longrope_parameters,
|
539 |
+
"llama3": _validate_llama3_parameters,
|
540 |
+
}
|
541 |
+
|
542 |
+
|
543 |
+
def rope_config_validation(config: PretrainedConfig):
|
544 |
+
"""
|
545 |
+
Validate the RoPE config arguments, given a `PretrainedConfig` object
|
546 |
+
"""
|
547 |
+
rope_scaling = getattr(config, "rope_scaling", None) # not a default parameter in `PretrainedConfig`
|
548 |
+
if rope_scaling is None:
|
549 |
+
return
|
550 |
+
|
551 |
+
# BC: "rope_type" was originally "type"
|
552 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default"))
|
553 |
+
validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type)
|
554 |
+
if validation_fn is not None:
|
555 |
+
validation_fn(config)
|
556 |
+
else:
|
557 |
+
logger.warning(
|
558 |
+
f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'"
|
559 |
+
)
|
transformers_4_44_2__pytorch_utils.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from torch import nn
|
16 |
+
|
17 |
+
ALL_LAYERNORM_LAYERS = [nn.LayerNorm]
|
variable_cache.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Nvidia Corporation. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from copy import deepcopy
|
17 |
+
from typing import Optional, Dict, Any, Tuple
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from transformers.cache_utils import Cache # used to let GenerationMixin know that we use a Cache object
|
21 |
+
|
22 |
+
from .configuration_decilm import DeciLMConfig
|
23 |
+
from .transformers_4_44_2__cache_utils import Cache as Cache_4_44_2, SinkCache, StaticCache, SlidingWindowCache
|
24 |
+
|
25 |
+
|
26 |
+
class VariableCache(Cache_4_44_2, Cache):
|
27 |
+
"""
|
28 |
+
A Cache object that supports a different Cache implementation for every layer,
|
29 |
+
including layers without any kv-cache.
|
30 |
+
Implemented using a list of Cache objects, each represents a "model" with 1 layer.
|
31 |
+
The default implementation for the layer caches is StaticCache.
|
32 |
+
The cache of each layer is allocated to the same gpu as the layer itself.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
*, # key-word only, no positional args allowed to avoid mix-ups with newer transformers versions
|
38 |
+
config: DeciLMConfig,
|
39 |
+
batch_size: int = None,
|
40 |
+
max_cache_len: int = None,
|
41 |
+
dtype: torch.dtype = torch.float32,
|
42 |
+
max_batch_size: Optional[int] = None,
|
43 |
+
**kwargs,
|
44 |
+
) -> None:
|
45 |
+
Cache_4_44_2.__init__(self)
|
46 |
+
|
47 |
+
self.config = deepcopy(config)
|
48 |
+
self.max_batch_size = batch_size or max_batch_size
|
49 |
+
self.batch_size = self.max_batch_size
|
50 |
+
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
|
51 |
+
self.dtype = dtype
|
52 |
+
|
53 |
+
self.layer_caches: list[Cache_4_44_2 | None] = [None] * config.num_hidden_layers
|
54 |
+
self.layer_devices: list[torch.device | None] = [None] * config.num_hidden_layers
|
55 |
+
|
56 |
+
def update(
|
57 |
+
self,
|
58 |
+
key_states: torch.Tensor,
|
59 |
+
value_states: torch.Tensor,
|
60 |
+
layer_idx: int,
|
61 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
62 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
63 |
+
if self.layer_caches[layer_idx] is None:
|
64 |
+
self.layer_devices[layer_idx] = key_states.device
|
65 |
+
self._init_layer_cache(layer_idx)
|
66 |
+
|
67 |
+
layer_cache = self.layer_caches[layer_idx]
|
68 |
+
assert layer_cache is not None, f"Trying to update the cache of a cache-less layer: {layer_idx=}"
|
69 |
+
|
70 |
+
k_out, v_out = layer_cache.update(key_states=key_states,
|
71 |
+
value_states=value_states,
|
72 |
+
layer_idx=0,
|
73 |
+
cache_kwargs=cache_kwargs)
|
74 |
+
seq_len = self.get_seq_length(layer_idx)
|
75 |
+
k_out = k_out[:, :, :seq_len, :]
|
76 |
+
v_out = v_out[:, :, :seq_len, :]
|
77 |
+
return k_out, v_out
|
78 |
+
|
79 |
+
def _init_layer_cache(self, layer_idx: int) -> None:
|
80 |
+
block_config = self.config.block_configs[layer_idx]
|
81 |
+
attention_config = block_config.attention
|
82 |
+
|
83 |
+
if attention_config.no_op or attention_config.replace_with_linear:
|
84 |
+
return None
|
85 |
+
|
86 |
+
device = self.layer_devices[layer_idx]
|
87 |
+
assert device is not None, f"Trying to init layer cache for {layer_idx=} without device"
|
88 |
+
|
89 |
+
config = deepcopy(self.config)
|
90 |
+
config.num_hidden_layers = 1
|
91 |
+
config.num_key_value_heads = self.config.num_attention_heads // attention_config.n_heads_in_group
|
92 |
+
|
93 |
+
if attention_config.window_length is not None:
|
94 |
+
if not attention_config.is_sink:
|
95 |
+
config.sliding_window = attention_config.window_length
|
96 |
+
self.layer_caches[layer_idx] = SlidingWindowCache(config=config,
|
97 |
+
max_batch_size=self.max_batch_size,
|
98 |
+
max_cache_len=self.max_cache_len,
|
99 |
+
device=device,
|
100 |
+
dtype=self.dtype)
|
101 |
+
return
|
102 |
+
elif not attention_config.unshifted_sink:
|
103 |
+
self.layer_caches[layer_idx] = SinkCache(window_length=attention_config.window_length,
|
104 |
+
num_sink_tokens=attention_config.num_sink_tokens)
|
105 |
+
return
|
106 |
+
|
107 |
+
self.layer_caches[layer_idx] = StaticCache(config=config,
|
108 |
+
max_batch_size=self.max_batch_size,
|
109 |
+
max_cache_len=self.max_cache_len,
|
110 |
+
device=device,
|
111 |
+
dtype=self.dtype)
|
112 |
+
|
113 |
+
def _get_first_real_cache(self) -> Cache:
|
114 |
+
for layer_cache in self.layer_caches:
|
115 |
+
if layer_cache is not None:
|
116 |
+
return layer_cache
|
117 |
+
raise ValueError(f"No real cache found, all layer caches are None.")
|
118 |
+
|
119 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
120 |
+
if layer_idx == 0 and self.layer_caches[0] is None:
|
121 |
+
try:
|
122 |
+
layer_cache = self._get_first_real_cache()
|
123 |
+
except ValueError:
|
124 |
+
return 0
|
125 |
+
else:
|
126 |
+
layer_cache = self.layer_caches[layer_idx]
|
127 |
+
return layer_cache.get_seq_length()
|
128 |
+
|
129 |
+
def get_max_length(self) -> Optional[int]:
|
130 |
+
"""Returns the maximum sequence length of the cached states."""
|
131 |
+
return self.max_cache_len
|
132 |
+
|
133 |
+
def reset(self):
|
134 |
+
for layer_idx in range(len(self.layer_caches)):
|
135 |
+
layer_cache = self.layer_caches[layer_idx]
|
136 |
+
if hasattr(layer_cache, "reset"):
|
137 |
+
layer_cache.reset()
|
138 |
+
else:
|
139 |
+
self._init_layer_cache(layer_idx)
|