Peter180 commited on
Commit
55d96f7
·
verified ·
1 Parent(s): 05e3fae

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DLF: Disentangled-Language-Focused Multimodal Sentiment Analysis, AAAI 2025.
2
+
3
+ ### [Arxiv Paper](https://arxiv.org/abs/2412.12225)
4
+
5
+ ## Main Contributions
6
+
7
+ Our main contributions can be summarized as follows:
8
+
9
+ - **Proposed Framework:** In this study, we propose a Disentangled-Language-Focused (DLF) multimodal representation learning framework to promote MSA tasks. The framework follows a structured pipeline: feature extraction, disentanglement, enhancement, fusion, and prediction.
10
+ - **Language-Focused Attractor (LFA):** We develop the LFA to fully harness the potential of the dominant language modality within the modality-specific space. The LFA exploits the language-guided multimodal cross-attention mechanisms to achieve a targeted feature enhancement ($X$->Language).
11
+ - **Hierarchical Predictions:** We devise hierarchical predictions to leverage the pre-fused and post-fused features, improving the total MSA accuracy.
12
+
13
+
14
+ ## Usage
15
+
16
+ ### Prerequisites
17
+ - Python 3.9.13
18
+ - PyTorch 1.13.0
19
+ - CUDA 11.7
20
+
21
+ ### Installation
22
+ - Create a conda environment. Please make sure you have installed conda before.
23
+ ```
24
+ conda create -n DLF python==3.9.13
25
+ ```
26
+ - Activate the built DLF environment.
27
+ ```
28
+ conda activate DLF
29
+ ```
30
+ - Install Pytorch with CUDA
31
+ ```
32
+ pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
33
+ ```
34
+ - Clone this repo.
35
+ ```
36
+ git clone https://github.com/pwang322/DLF.git
37
+ ```
38
+ - Install the necessary packages.
39
+ ```
40
+ cd DLF
41
+ pip install -r requirements.txt
42
+ ```
43
+
44
+ ### Datasets
45
+ Data files (containing processed MOSI, MOSEI datasets) can be downloaded from [here](https://drive.google.com/drive/folders/1BBadVSptOe4h8TWchkhWZRLJw8YG_aEi?usp=sharing).
46
+ You can first build and then put the downloaded datasets into `./dataset` directory and revise the path in `./config/config.json`. For example, if the processed the MOSI dataset is located in `./dataset/MOSI/aligned_50.pkl`. Please make sure "dataset_root_dir": "./dataset" and "featurePath": "MOSI/aligned_50.pkl".
47
+ Please note that the meta information and the raw data are not available due to the privacy of YouTube content creators. For more details, please follow the [official website](https://github.com/ecfm/CMU-MultimodalSDK) of these datasets.
48
+
49
+ ### Run the Codes
50
+ - Training
51
+
52
+ You can first set the training dataset name in `./train.py` as "mosei" or "mosi", and then run:
53
+ ```
54
+ python3 train.py
55
+ ```
56
+ By default, the trained model will be saved in `./pt` directory. You can change this in `train.py`.
57
+
58
+ - Testing
59
+
60
+ You can first set the testing dataset name in `./test.py` as "mosei" or "mosi", and then test the trained model:
61
+ ```
62
+ python3 test.py
63
+ ```
64
+ We also provide pre-trained models for testing. ([Google drive](https://drive.google.com/drive/folders/1GgCfC1ITAnRRw6RScGc7c2YUg5Ccbdba?usp=sharing))
65
+
66
+ #### 🤗 Option 2: Load Pretrained Models from Hugging Face Hub
67
+
68
+ We also release pre-trained models on Hugging Face for direct use:
69
+
70
+ ```
71
+ from trains.singleTask.model.DLF import DLF
72
+ model = DLF.from_pretrained("Peter180/DLF_mosei") # or "Peter180/DLF_mosi"
73
+ ```
74
+
75
+ ### Citation
76
+ If you find the code and our idea helpful in your research or work, please cite the following paper.
77
+
78
+ ```
79
+ @article{wang2024dlf,
80
+ title={DLF: Disentangled-Language-Focused Multimodal Sentiment Analysis},
81
+ author={Wang, Pan and Zhou, Qiang and Wu, Yawen and Chen, Tianlong and Hu, Jingtong},
82
+ journal={arXiv preprint arXiv:2412.12225},
83
+ year={2024}
84
+ }
85
+ ```
86
+
87
+
88
+
89
+