{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb05bf25c00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1348516, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689808865107953786, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAF0FYb4Tf6A/9TxUv9Ecr75Cjea/PzZJv5wJEj8Lm24/DtNgP7Ppob7E+Ls+Iqb4veBqG78NgYvAkTVsvyBvIz/tkQe/jEmJvzjher7qs+2+2EkCPzNQrj+e1IG/5HSBPRo+Xz9Ow/C/HyXBPtqzw7/Z3fY+XFqEP9WLyb6iDCG+CxaDPy35T8DWxbw/VXy7vddFVr8YNytALbKgPjQvCT76mos/di/Bvxseeb/LL4q/uKCevwz8sz8jwNw+Ya7dvxbfi7/EK5E/5bmAvzWUp7wzyJK/TsPwvx8lwT7as8O/6VuWPhfTOj6OV/U+V40CQLgw3T644cs/QyBrP/k7F7/LF50+ZqCsv3PMuD/VUW2/kctwvxeTAz/0bIC/ZNbrPlrKGr/O7Ni/oqxrPwWrqjzrXeQ9quLvv7aofT4RRAg/M8iSv8cZCD8fJcE+EnAnP7tvj75EEyq+P6ggP/7KYb8oYrY+AKyfPl1cI763v+c+25VSP862J79y7LO+FN8sQGCgwb+liKY9skl1vMuJlr4qfbU/mNZSvcCzMz2lTp0+WyulP+YP1b5jO5i+7lKCPjPIkr/HGQg/HyXBPhJwJz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAs5NC0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOQ2nPQAAAACEHOG/AAAAAJkWgT0AAAAAgL3fPwAAAABEDcA8AAAAAF/66D8AAAAA7p/NPAAAAAAVSNy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOHmDtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDd4ab0AAAAAD2bjvwAAAABXsdC9AAAAAFc69T8AAAAAGdC0vAAAAACHL/c/AAAAAN5lzz0AAAAAqpoAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN1lIbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBXsag9AAAAANwr9r8AAAAAW4kGvgAAAACZKuw/AAAAALIUqj0AAAAAO33ePwAAAAAMYcC8AAAAAB9r/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV8qC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFWn+vQAAAADfQt6/AAAAAIBT/b0AAAAAsPT1PwAAAABNI5u9AAAAANdP4T8AAAAAb1kJPgAAAADPdei/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.32574400000000003, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJBHNpztCzGMAWyUTegDjAF0lEdAopb7ghr303V9lChoBkdAkLCRREWqLmgHTegDaAhHQKKZMFmFrVR1fZQoaAZHQJACQpAlfJFoB03oA2gIR0Cim/Yx1xKhdX2UKGgGR0CTIseenQ6ZaAdN6ANoCEdAop0BmCiAUnV9lChoBkdAjWQnd43WF2gHTegDaAhHQKKl3v4M4Ll1fZQoaAZHQJPPDE1l5GBoB03oA2gIR0Cip1tL127ndX2UKGgGR0CQlDRLK3d9aAdN6ANoCEdAoqj/LA57xHV9lChoBkdAkZ4eKwY+CGgHTegDaAhHQKKqE8eS0Sh1fZQoaAZHQI/BF4cFQl9oB03oA2gIR0CitMBPKuB+dX2UKGgGR0CSMuyM1jy4aAdN6ANoCEdAorcsI/qxDHV9lChoBkdAkZNvmPo3aWgHTegDaAhHQKK5AnGbTc91fZQoaAZHQJAHSfI0ZWJoB03oA2gIR0CiuhOfmLccdX2UKGgGR0CS6oxBE8aGaAdN6ANoCEdAosMEJ6Y3N3V9lChoBkdAkujMTzundmgHTegDaAhHQKLEgbsniNt1fZQoaAZHQJNbpB+nZTRoB03oA2gIR0CixjLv1DjSdX2UKGgGR0CSgoe+23KCaAdN6ANoCEdAosc/VAiV0XV9lChoBkdAkZJ90q6OHWgHTegDaAhHQKLSuUhV2id1fZQoaAZHQIpEtb/wRXhoB03oA2gIR0Ci1GS+Yc//dX2UKGgGR0CUXvOrhisoaAdN6ANoCEdAotYJOvdM03V9lChoBkdAk0CrZvkzXWgHTegDaAhHQKLXEvmozep1fZQoaAZHQJQJZDIBBAxoB03oA2gIR0Ci4AIfbKzSdX2UKGgGR0CK5W29+PRzaAdN6ANoCEdAouFuuPmxMXV9lChoBkdAkJ0R+8XenGgHTegDaAhHQKLjFRplBhR1fZQoaAZHQJObKqDK5kNoB03oA2gIR0Ci5CHqNZNgdX2UKGgGR0CUV3eYUnG9aAdN6ANoCEdAovBEAYHgP3V9lChoBkdAlStPlU6xPmgHTegDaAhHQKLxsYUFjd51fZQoaAZHQJKwxqveP7xoB03oA2gIR0Ci81tfw7T2dX2UKGgGR0CRPjq0tyxSaAdN6ANoCEdAovRrZ39rGnV9lChoBkdAifilVcUuc2gHTegDaAhHQKL9i67ulXR1fZQoaAZHQJIrBU0elsRoB03oA2gIR0Ci/vjoyKvWdX2UKGgGR0CT3IXcxj8UaAdN6ANoCEdAowC5Rjz7M3V9lChoBkdAkGFEhzNliGgHTegDaAhHQKMBy9FnZkF1fZQoaAZHQJNpEvxpcopoB03oA2gIR0CjDXHNgSezdX2UKGgGR0CUfie8PFvRaAdN6ANoCEdAow7yxA0KqnV9lChoBkdAk3J1Gsmv4mgHTegDaAhHQKMQok/KQq91fZQoaAZHQJMulD6WPcVoB03oA2gIR0CjEaYjbBXTdX2UKGgGR0CUTJoC+10DaAdN6ANoCEdAoxqa1E3KjnV9lChoBkdAlODBlcyFf2gHTegDaAhHQKMcCbp/wy91fZQoaAZHQJV0nDdgv11oB03oA2gIR0CjHaOkk8ifdX2UKGgGR0CSOEsiB5HFaAdN6ANoCEdAox6s7bL2YnV9lChoBkdAkc1HzxwyZmgHTegDaAhHQKMqko/iYLN1fZQoaAZHQJXEvvXsgMdoB03oA2gIR0CjK/3d0q6OdX2UKGgGR0CUyAwX668QaAdN6ANoCEdAoy2phMJyAHV9lChoBkdAlJdurMkhR2gHTegDaAhHQKMuv4593KV1fZQoaAZHQJRRzVc2R7toB03oA2gIR0CjN7ipvP1MdX2UKGgGR0CS95rR0EHMaAdN6ANoCEdAozkzD4xk/nV9lChoBkdAlG3kSRKYiWgHTegDaAhHQKM6+2606YF1fZQoaAZHQJVwtJXhfjVoB03oA2gIR0CjPKd/z8P4dX2UKGgGR0CTY0rWRRuTaAdN6ANoCEdAo0fZhF3IMnV9lChoBkdAlHVK7mMfimgHTegDaAhHQKNJPo6CDmN1fZQoaAZHQJW2NwBHTZxoB03oA2gIR0CjSuCFsYVJdX2UKGgGR0CULNWK/EflaAdN6ANoCEdAo0vuLWI42nV9lChoBkdAk4yfxhDw6WgHTegDaAhHQKNU1y9VWCF1fZQoaAZHQJHRb8Jlar5oB03oA2gIR0CjVkBP9DQadX2UKGgGR0CTCWx8lXzUaAdN6ANoCEdAo1jI1zhgmnV9lChoBkdAkMWoYixFAmgHTegDaAhHQKNaaGlhw2l1fZQoaAZHQJSjsXl8w6BoB03oA2gIR0CjZp4lQdjodX2UKGgGR0CTl5D3M6ikaAdN6ANoCEdAo2kHko4MnnV9lChoBkdAjFrDNQj2SWgHTegDaAhHQKNrGLeANG51fZQoaAZHQJR0qlxffGdoB03oA2gIR0CjbCucc2itdX2UKGgGR0CTLr5hScbzaAdN6ANoCEdAo3bhY5ksjHV9lChoBkdAksYVJpWV/2gHTegDaAhHQKN5NWCEpRZ1fZQoaAZHQI/wHNcGC7NoB03oA2gIR0Cje1YUeuFIdX2UKGgGR0CTjcLb5/LDaAdN6ANoCEdAo3xlqtYCAHV9lChoBkdAkr4LCWNWEWgHTegDaAhHQKOFbXCj1wp1fZQoaAZHQI/7l1IRRMxoB03oA2gIR0CjhuwB5ooNdX2UKGgGR0CTyndyDIzWaAdN6ANoCEdAo4ibu+h4+3V9lChoBkdAlMKNtl7MPmgHTegDaAhHQKOJqymALAp1fZQoaAZHQJWTQYqG1x9oB03oA2gIR0CjlZxgZ0jkdX2UKGgGR0CUqo2GIsRQaAdN6ANoCEdAo5chm9QGfXV9lChoBkdAj50OkDZDiWgHTegDaAhHQKOYx4nF5v91fZQoaAZHQJO3FlFtsN5oB03oA2gIR0CjmdGgzxgBdX2UKGgGR0CTT0gXMyJsaAdN6ANoCEdAo6LnXK8tgHV9lChoBkdAkuS9H6MzdmgHTegDaAhHQKOka38XN1R1fZQoaAZHQJS2aFbmlqJoB03oA2gIR0CjphGvW6K+dX2UKGgGR0CTgTjghr31aAdN6ANoCEdAo6cdapxWDHV9lChoBkdAkuaeuzQeFWgHTegDaAhHQKOy8PBBRht1fZQoaAZHQJJTdG4I8hdoB03oA2gIR0CjtF2m51/2dX2UKGgGR0CTYf2LpA2RaAdN6ANoCEdAo7YQVmBe5XV9lChoBkdAisdp0fYBeWgHTegDaAhHQKO3GuHN5dJ1fZQoaAZHQJF8oOby6MBoB03oA2gIR0CjwBtLcsUZdX2UKGgGR0CQHXV1fVqfaAdN6ANoCEdAo8GSKFZgX3V9lChoBkdAinPm21D0DmgHTegDaAhHQKPDP9FWn0l1fZQoaAZHQI0CrQLNOdpoB03oA2gIR0CjxE2+oLofdX2UKGgGR0CR1OZ9d/rjaAdN6ANoCEdAo9BPjuKGcnV9lChoBkdAkjrh9gF5fWgHTegDaAhHQKPRwdNnGsF1fZQoaAZHQI2JALPUrkNoB03oA2gIR0Cj02q7iADrdX2UKGgGR0CO5XSeiBXkaAdN6ANoCEdAo9R8bPyCnXV9lChoBkdAkcY6S5iEx2gHTegDaAhHQKPdcEoOQQt1fZQoaAZHQJLKNwGW2PVoB03oA2gIR0Cj3t/G+9J0dX2UKGgGR0CPfaDW9US7aAdN6ANoCEdAo+CkTL4etHV9lChoBkdAkALH6VMVUWgHTegDaAhHQKPh4Qsf7rN1fZQoaAZHQJAh33wkPc1oB03oA2gIR0Cj7bn7P6bfdX2UKGgGR0CSSjiOearnaAdN6ANoCEdAo+8llqagEnV9lChoBkdAkVwS17Y022gHTegDaAhHQKPw0btqpLp1fZQoaAZHQJBi2jVQQ+VoB03oA2gIR0Cj8fIzFdcCdX2UKGgGR0CRrtWk8A7xaAdN6ANoCEdAo/rwChew93V9lChoBkdAkd/1XvH932gHTegDaAhHQKP8YA/cFhZ1fZQoaAZHQJG9b2VVxS5oB03oA2gIR0Cj/niLuQZGdX2UKGgGR0CS8EEIw/PgaAdN6ANoCEdApAAe+Eh7mnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 42141, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}