End of training
Browse files- README.md +130 -195
- config.json +78 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,134 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/mit-b0
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
- image-segmentation
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: segformer-b0-finetuned-oldapp-dec-4
|
11 |
+
results: []
|
12 |
---
|
13 |
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# segformer-b0-finetuned-oldapp-dec-4
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the PushkarA07/oldapptiles5 dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0403
|
22 |
+
- Mean Iou: 0.4995
|
23 |
+
- Mean Accuracy: 0.5
|
24 |
+
- Overall Accuracy: 0.9990
|
25 |
+
- Accuracy Abnormality: 0.0
|
26 |
+
- Iou Abnormality: 0.0
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 6e-05
|
46 |
+
- train_batch_size: 2
|
47 |
+
- eval_batch_size: 2
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 50
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Abnormality | Iou Abnormality |
|
56 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------:|:---------------:|
|
57 |
+
| 0.2898 | 0.7143 | 10 | 0.2757 | 0.4992 | 0.4997 | 0.9984 | 0.0 | 0.0 |
|
58 |
+
| 0.2605 | 1.4286 | 20 | 0.2029 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
59 |
+
| 0.2573 | 2.1429 | 30 | 0.1829 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
60 |
+
| 0.4388 | 2.8571 | 40 | 0.1301 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
61 |
+
| 0.1893 | 3.5714 | 50 | 0.1529 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
62 |
+
| 0.171 | 4.2857 | 60 | 0.1322 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
63 |
+
| 0.1502 | 5.0 | 70 | 0.1239 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
64 |
+
| 0.1267 | 5.7143 | 80 | 0.1285 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
65 |
+
| 0.1421 | 6.4286 | 90 | 0.0891 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
66 |
+
| 0.1271 | 7.1429 | 100 | 0.0684 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
67 |
+
| 0.1206 | 7.8571 | 110 | 0.0718 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
68 |
+
| 0.0802 | 8.5714 | 120 | 0.0802 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
69 |
+
| 0.0765 | 9.2857 | 130 | 0.0591 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
70 |
+
| 0.1025 | 10.0 | 140 | 0.0541 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
71 |
+
| 0.0711 | 10.7143 | 150 | 0.0572 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
72 |
+
| 0.0621 | 11.4286 | 160 | 0.0488 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
73 |
+
| 0.0611 | 12.1429 | 170 | 0.0446 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
74 |
+
| 0.0665 | 12.8571 | 180 | 0.0383 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
75 |
+
| 0.0625 | 13.5714 | 190 | 0.0492 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
76 |
+
| 0.0473 | 14.2857 | 200 | 0.0454 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
77 |
+
| 0.0379 | 15.0 | 210 | 0.0384 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
78 |
+
| 0.0597 | 15.7143 | 220 | 0.0423 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
79 |
+
| 0.0436 | 16.4286 | 230 | 0.0474 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
80 |
+
| 0.0591 | 17.1429 | 240 | 0.0424 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
81 |
+
| 0.0337 | 17.8571 | 250 | 0.0359 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
82 |
+
| 0.0455 | 18.5714 | 260 | 0.0394 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
83 |
+
| 0.0322 | 19.2857 | 270 | 0.0321 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
84 |
+
| 0.0339 | 20.0 | 280 | 0.0440 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
85 |
+
| 0.0336 | 20.7143 | 290 | 0.0459 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
86 |
+
| 0.0357 | 21.4286 | 300 | 0.0324 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
87 |
+
| 0.0286 | 22.1429 | 310 | 0.0264 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
88 |
+
| 0.0301 | 22.8571 | 320 | 0.0166 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
89 |
+
| 0.0252 | 23.5714 | 330 | 0.0229 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
90 |
+
| 0.0296 | 24.2857 | 340 | 0.0298 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
91 |
+
| 0.033 | 25.0 | 350 | 0.0389 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
92 |
+
| 0.0279 | 25.7143 | 360 | 0.0346 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
93 |
+
| 0.0266 | 26.4286 | 370 | 0.0425 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
94 |
+
| 0.0278 | 27.1429 | 380 | 0.0395 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
95 |
+
| 0.0458 | 27.8571 | 390 | 0.0228 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
96 |
+
| 0.0289 | 28.5714 | 400 | 0.0183 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
97 |
+
| 0.0261 | 29.2857 | 410 | 0.0300 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
98 |
+
| 0.031 | 30.0 | 420 | 0.0295 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
99 |
+
| 0.0342 | 30.7143 | 430 | 0.0457 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
100 |
+
| 0.0271 | 31.4286 | 440 | 0.0349 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
101 |
+
| 0.0198 | 32.1429 | 450 | 0.0407 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
102 |
+
| 0.0231 | 32.8571 | 460 | 0.0443 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
103 |
+
| 0.0392 | 33.5714 | 470 | 0.0398 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
104 |
+
| 0.0166 | 34.2857 | 480 | 0.0206 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
105 |
+
| 0.0215 | 35.0 | 490 | 0.0302 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
106 |
+
| 0.0983 | 35.7143 | 500 | 0.0117 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
107 |
+
| 0.0162 | 36.4286 | 510 | 0.0237 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
108 |
+
| 0.0211 | 37.1429 | 520 | 0.0395 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
109 |
+
| 0.0228 | 37.8571 | 530 | 0.0526 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
110 |
+
| 0.0198 | 38.5714 | 540 | 0.0480 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
111 |
+
| 0.0192 | 39.2857 | 550 | 0.0479 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
112 |
+
| 0.0213 | 40.0 | 560 | 0.0390 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
113 |
+
| 0.0185 | 40.7143 | 570 | 0.0456 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
114 |
+
| 0.0179 | 41.4286 | 580 | 0.0337 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
115 |
+
| 0.0307 | 42.1429 | 590 | 0.0460 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
116 |
+
| 0.0199 | 42.8571 | 600 | 0.0443 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
117 |
+
| 0.0121 | 43.5714 | 610 | 0.0313 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
118 |
+
| 0.0184 | 44.2857 | 620 | 0.0435 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
119 |
+
| 0.0243 | 45.0 | 630 | 0.0440 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
120 |
+
| 0.02 | 45.7143 | 640 | 0.0457 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
121 |
+
| 0.0144 | 46.4286 | 650 | 0.0440 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
122 |
+
| 0.013 | 47.1429 | 660 | 0.0295 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
123 |
+
| 0.0156 | 47.8571 | 670 | 0.0429 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
124 |
+
| 0.0201 | 48.5714 | 680 | 0.0453 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
125 |
+
| 0.018 | 49.2857 | 690 | 0.0384 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
126 |
+
| 0.0118 | 50.0 | 700 | 0.0403 | 0.4995 | 0.5 | 0.9990 | 0.0 | 0.0 |
|
127 |
+
|
128 |
+
|
129 |
+
### Framework versions
|
130 |
+
|
131 |
+
- Transformers 4.46.2
|
132 |
+
- Pytorch 2.5.1+cu121
|
133 |
+
- Datasets 3.1.0
|
134 |
+
- Tokenizers 0.20.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b0",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
32,
|
26 |
+
64,
|
27 |
+
160,
|
28 |
+
256
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "normal",
|
32 |
+
"1": "abnormality"
|
33 |
+
},
|
34 |
+
"image_size": 224,
|
35 |
+
"initializer_range": 0.02,
|
36 |
+
"label2id": {
|
37 |
+
"abnormality": 1,
|
38 |
+
"normal": 0
|
39 |
+
},
|
40 |
+
"layer_norm_eps": 1e-06,
|
41 |
+
"mlp_ratios": [
|
42 |
+
4,
|
43 |
+
4,
|
44 |
+
4,
|
45 |
+
4
|
46 |
+
],
|
47 |
+
"model_type": "segformer",
|
48 |
+
"num_attention_heads": [
|
49 |
+
1,
|
50 |
+
2,
|
51 |
+
5,
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"num_channels": 3,
|
55 |
+
"num_encoder_blocks": 4,
|
56 |
+
"patch_sizes": [
|
57 |
+
7,
|
58 |
+
3,
|
59 |
+
3,
|
60 |
+
3
|
61 |
+
],
|
62 |
+
"reshape_last_stage": true,
|
63 |
+
"semantic_loss_ignore_index": 255,
|
64 |
+
"sr_ratios": [
|
65 |
+
8,
|
66 |
+
4,
|
67 |
+
2,
|
68 |
+
1
|
69 |
+
],
|
70 |
+
"strides": [
|
71 |
+
4,
|
72 |
+
2,
|
73 |
+
2,
|
74 |
+
2
|
75 |
+
],
|
76 |
+
"torch_dtype": "float32",
|
77 |
+
"transformers_version": "4.46.2"
|
78 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:535c79589365ef6a1f65d2b6835a9c210d6363be312f93a262b82bd427f546fc
|
3 |
+
size 14884776
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b073ccb150917132b9522cb4fb9a63b10194d71025d7f8412427eb5906842852
|
3 |
+
size 5304
|