Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
license: cc-by-nc-sa-4.0
|
5 |
+
language:
|
6 |
+
- multilingual
|
7 |
+
- fa
|
8 |
+
- en
|
9 |
+
library_name: transformers
|
10 |
+
tags:
|
11 |
+
- text-generation-inference
|
12 |
+
inference: false
|
13 |
+
metrics:
|
14 |
+
- bleu
|
15 |
+
- comet
|
16 |
+
- accuracy
|
17 |
+
- perplexity
|
18 |
+
- spearmanr
|
19 |
+
pipeline_tag: text-generation
|
20 |
+
co2_eq_emissions:
|
21 |
+
emissions: 232380
|
22 |
+
source: "PersianMind: A Cross-Lingual Persian-English Large Language Model. https://arxiv.org/abs/2401.06466"
|
23 |
+
training_type: "fine-tuning"
|
24 |
+
hardware_used: "4 RTX3090 24GB GPUs"
|
25 |
+
geographical_location: "Tehran, Iran"
|
26 |
+
|
27 |
+
---
|
28 |
+
|
29 |
+
[](https://hf.co/QuantFactory)
|
30 |
+
|
31 |
+
|
32 |
+
# QuantFactory/PersianMind-v1.0-GGUF
|
33 |
+
This is quantized version of [universitytehran/PersianMind-v1.0](https://huggingface.co/universitytehran/PersianMind-v1.0) created using llama.cpp
|
34 |
+
|
35 |
+
# Original Model Card
|
36 |
+
|
37 |
+
|
38 |
+
<p align="center">
|
39 |
+
<img src="PersianMind.jpg" alt="PersianMind logo" width=200/>
|
40 |
+
</p>
|
41 |
+
|
42 |
+
|
43 |
+
# <span style="font-variant:small-caps;">PersianMind</span>
|
44 |
+
|
45 |
+
<span style="font-variant:small-caps;">PersianMind</span> is a cross-lingual Persian-English large language model.
|
46 |
+
The model achieves state-of-the-art results on Persian subset of the [<span style="font-variant:small-caps;">Belebele</span>](https://github.com/facebookresearch/belebele) benchmark
|
47 |
+
and the [ParsiNLU multiple-choice QA](https://github.com/persiannlp/parsinlu) task.
|
48 |
+
It also attains performance comparable to GPT-3.5-turbo in a Persian reading comprehension task.
|
49 |
+
|
50 |
+
## Model Description
|
51 |
+
|
52 |
+
- **Developed by:** [Pedram Rostami](mailto:[email protected]), [Ali Salemi](mailto:[email protected]), and [Mohammad Javad Dousti](mailto:[email protected])
|
53 |
+
- **Model type:** Language model
|
54 |
+
- **Languages:** English and Persian
|
55 |
+
- **License:** [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) (non-commercial use only.)
|
56 |
+
|
57 |
+
## How to Get Started with the Model
|
58 |
+
|
59 |
+
Use the code below to get started with the model.
|
60 |
+
Note that you need to install <code><b>sentencepiece</b></code> and <code><b>accelerate</b></code> libraries along with <code><b>PyTorch</b></code> and <code><b>🤗Transformers</b></code> to run this code.
|
61 |
+
|
62 |
+
```python
|
63 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
64 |
+
import torch
|
65 |
+
|
66 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
67 |
+
model = AutoModelForCausalLM.from_pretrained(
|
68 |
+
"universitytehran/PersianMind-v1.0",
|
69 |
+
torch_dtype=torch.bfloat16,
|
70 |
+
low_cpu_mem_usage=True,
|
71 |
+
device_map={"": device},
|
72 |
+
)
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
74 |
+
"universitytehran/PersianMind-v1.0",
|
75 |
+
)
|
76 |
+
|
77 |
+
TEMPLATE = "{context}\nYou: {prompt}\nPersianMind: "
|
78 |
+
CONTEXT = "This is a conversation with PersianMind. It is an artificial intelligence model designed by a team of " \
|
79 |
+
"NLP experts at the University of Tehran to help you with various tasks such as answering questions, " \
|
80 |
+
"providing recommendations, and helping with decision making. You can ask it anything you want and " \
|
81 |
+
"it will do its best to give you accurate and relevant information."
|
82 |
+
PROMPT = "در مورد هوش مصنوعی توضیح بده."
|
83 |
+
|
84 |
+
model_input = TEMPLATE.format(context=CONTEXT, prompt=PROMPT)
|
85 |
+
input_tokens = tokenizer(model_input, return_tensors="pt")
|
86 |
+
input_tokens = input_tokens.to(device)
|
87 |
+
generate_ids = model.generate(**input_tokens, max_new_tokens=512, do_sample=False, repetition_penalty=1.1)
|
88 |
+
model_output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
89 |
+
|
90 |
+
print(model_output[len(model_input):])
|
91 |
+
```
|
92 |
+
|
93 |
+
### How to Quantize the Model
|
94 |
+
|
95 |
+
Quantized models can be run on resource-constrained devices.
|
96 |
+
To quantize the model, you should install the <code><b>bitsandbytes</b></code> library.
|
97 |
+
In order to quantize the model in 8-bit (`INT8`), use the code below.
|
98 |
+
|
99 |
+
```python
|
100 |
+
model = AutoModelForCausalLM.from_pretrained(
|
101 |
+
"universitytehran/PersianMind-v1.0",
|
102 |
+
device_map="auto",
|
103 |
+
low_cpu_mem_usage=True,
|
104 |
+
load_in_8bit=True
|
105 |
+
)
|
106 |
+
```
|
107 |
+
|
108 |
+
Alternatively, you can quantize the model in 4-bit (`NormalFloat4`) with the following code.
|
109 |
+
|
110 |
+
```python
|
111 |
+
from transformers import BitsAndBytesConfig
|
112 |
+
|
113 |
+
quantization_config = BitsAndBytesConfig(
|
114 |
+
load_in_4bit=True,
|
115 |
+
bnb_4bit_use_double_quant=True,
|
116 |
+
bnb_4bit_quant_type="nf4",
|
117 |
+
)
|
118 |
+
model = AutoModelForCausalLM.from_pretrained(
|
119 |
+
"universitytehran/PersianMind-v1.0",
|
120 |
+
quantization_config=quantization_config,
|
121 |
+
device_map="auto"
|
122 |
+
)
|
123 |
+
```
|
124 |
+
|
125 |
+
### Evaluating Quantized Models
|
126 |
+
|
127 |
+
| Model | <span style="font-variant:small-caps;">Belebele</span> (Persian) | Fa→En Translation<br>(<span style="font-variant:small-caps;">Comet</span>) | En→Fa Translation<br>(<span style="font-variant:small-caps;">Comet</span>) | Model Size | Tokens/sec |
|
128 |
+
| :----------------------------------------------------------------: | :--------------------------------------------------------------: | :------------------------------------------------------------------------: | :------------------------------------------------------------------------: | :--------: | :--------: |
|
129 |
+
| <span style="font-variant:small-caps;">PersianMind</span> (`BF16`) | 73.9 | 83.61 | 79.44 | 13.7G | 25.35 |
|
130 |
+
| <span style="font-variant:small-caps;">PersianMind</span> (`INT8`) | 73.7 | 82.32 | 78.61 | 7.2G | 11.36 |
|
131 |
+
| <span style="font-variant:small-caps;">PersianMind</span> (`NF4`) | 70.2 | 82.07 | 80.36 | 3.9G | 24.36 |
|
132 |
+
|
133 |
+
We evaluated quantized models in various tasks against the original model.
|
134 |
+
Specifically, we evaluated all models using the reading comprehension multiple-choice
|
135 |
+
question-answering benchmark of [<span style="font-variant:small-caps;">Belebele</span>](https://github.com/facebookresearch/belebele) (Persian subset) and reported the accuracy of each model.
|
136 |
+
Additionally, we evaluated our models for Persian-to-English and English-to-Persian translation tasks.
|
137 |
+
For this, we utilized the Persian-English subset of the [<span style="font-variant:small-caps;">Flores</span>-200](https://github.com/facebookresearch/flores/tree/main/flores200) dataset and
|
138 |
+
reported our results using the <span style="font-variant:small-caps;">Comet</span> metric.
|
139 |
+
Furthermore, we calculated the average number of generated tokens per second by each model during running the translation tasks.
|
140 |
+
To understand resource efficiency, we measured the memory usage of each model by employing the `get_memory_footprint()` function.
|
141 |
+
|
142 |
+
## License
|
143 |
+
<span style="font-variant:small-caps;">PersianMind</span> is subject to Meta's [LLaMa2 Community License](https://raw.githubusercontent.com/facebookresearch/llama/main/LICENSE).
|
144 |
+
It is further licensed under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/), which allows non-commercial use of the model.
|
145 |
+
Commercial use of this model requires written agreement which must be obtained from the copyright holders who are listed as developers in this page.
|
146 |
+
If you suspect any violations, please reach out to us.
|
147 |
+
|
148 |
+
|
149 |
+
## Citation
|
150 |
+
|
151 |
+
If you find this model helpful, please ensure to cite the following paper.
|
152 |
+
|
153 |
+
**BibTeX:**
|
154 |
+
```bibtex
|
155 |
+
@misc{persianmind,
|
156 |
+
title={{PersianMind: A Cross-Lingual Persian-English Large Language Model}},
|
157 |
+
author={Rostami, Pedram and Salemi, Ali and Dousti, Mohammad Javad},
|
158 |
+
year={2024}
|
159 |
+
eprint={2401.06466},
|
160 |
+
archivePrefix={arXiv},
|
161 |
+
primaryClass={cs.CL}
|
162 |
+
}
|
163 |
+
```
|