Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +369 -3
- added_tokens.json +28 -0
- config.json +39 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +730 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +239 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,369 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Qwen3-14B-FP8
|
2 |
+
|
3 |
+
## Qwen3 Highlights
|
4 |
+
|
5 |
+
Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:
|
6 |
+
|
7 |
+
- **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
|
8 |
+
- **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
|
9 |
+
- **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
|
10 |
+
- **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
|
11 |
+
- **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.
|
12 |
+
|
13 |
+
## Model Overview
|
14 |
+
|
15 |
+
This repo contains the FP8 version of **Qwen3-14B**, which has the following features:
|
16 |
+
- Type: Causal Language Models
|
17 |
+
- Training Stage: Pretraining & Post-training
|
18 |
+
- Number of Parameters: 14.8B
|
19 |
+
- Number of Paramaters (Non-Embedding): 13.2B
|
20 |
+
- Number of Layers: 40
|
21 |
+
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
|
22 |
+
- Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts).
|
23 |
+
|
24 |
+
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
|
25 |
+
|
26 |
+
## Quickstart
|
27 |
+
|
28 |
+
The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
|
29 |
+
|
30 |
+
With `transformers<4.51.0`, you will encounter the following error:
|
31 |
+
```
|
32 |
+
KeyError: 'qwen3'
|
33 |
+
```
|
34 |
+
|
35 |
+
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
|
36 |
+
```python
|
37 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
38 |
+
|
39 |
+
model_name = "Qwen/Qwen3-14B-FP8"
|
40 |
+
|
41 |
+
# load the tokenizer and the model
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
model_name,
|
45 |
+
torch_dtype="auto",
|
46 |
+
device_map="auto"
|
47 |
+
)
|
48 |
+
|
49 |
+
# prepare the model input
|
50 |
+
prompt = "Give me a short introduction to large language model."
|
51 |
+
messages = [
|
52 |
+
{"role": "user", "content": prompt}
|
53 |
+
]
|
54 |
+
text = tokenizer.apply_chat_template(
|
55 |
+
messages,
|
56 |
+
tokenize=False,
|
57 |
+
add_generation_prompt=True,
|
58 |
+
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
|
59 |
+
)
|
60 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
61 |
+
|
62 |
+
# conduct text completion
|
63 |
+
generated_ids = model.generate(
|
64 |
+
**model_inputs,
|
65 |
+
max_new_tokens=32768
|
66 |
+
)
|
67 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
68 |
+
|
69 |
+
# parsing thinking content
|
70 |
+
try:
|
71 |
+
# rindex finding 151668 (</think>)
|
72 |
+
index = len(output_ids) - output_ids[::-1].index(151668)
|
73 |
+
except ValueError:
|
74 |
+
index = 0
|
75 |
+
|
76 |
+
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
|
77 |
+
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
78 |
+
|
79 |
+
print("thinking content:", thinking_content)
|
80 |
+
print("content:", content)
|
81 |
+
```
|
82 |
+
|
83 |
+
For deployment, you can use `vllm>=0.8.5` or `sglang>=0.4.5.post2` to create an OpenAI-compatible API endpoint:
|
84 |
+
- vLLM:
|
85 |
+
```shell
|
86 |
+
vllm serve Qwen/Qwen3-14B-FP8 --enable-reasoning --reasoning-parser deepseek_r1
|
87 |
+
```
|
88 |
+
- SGLang:
|
89 |
+
```shell
|
90 |
+
python -m sglang.launch_server --model-path Qwen/Qwen3-14B-FP8 --reasoning-parser deepseek-r1
|
91 |
+
```
|
92 |
+
|
93 |
+
## Note on FP8
|
94 |
+
|
95 |
+
For convenience and performance, we have provided `fp8`-quantized model checkpoint for Qwen3, whose name ends with `-FP8`. The quantization method is fine-grained `fp8` quantization with block size of 128. You can find more details in the `quantization_config` field in `config.json`.
|
96 |
+
|
97 |
+
You can use the Qwen3-14B-FP8 model with serveral inference frameworks, including `transformers`, `vllm`, and `sglang`, as the original bfloat16 model.
|
98 |
+
However, please pay attention to the following known issues:
|
99 |
+
- `transformers`:
|
100 |
+
- there are currently issues with the "fine-grained fp8" method in `transformers` for distributed inference. You may need to set the environment variable `CUDA_LAUNCH_BLOCKING=1` if multiple devices are used in inference.
|
101 |
+
- vLLM:
|
102 |
+
- there are currently compatibility issues with `vllm`. For a quick fix, you should make the following changes to `vllm/vllm/model_executor/layers/linear.py`:
|
103 |
+
```python
|
104 |
+
# these changes are in QKVParallelLinear.weight_loader_v2() of vllm/vllm/model_executor/layers/linear.py
|
105 |
+
...
|
106 |
+
shard_offset = self._get_shard_offset_mapping(loaded_shard_id)
|
107 |
+
shard_size = self._get_shard_size_mapping(loaded_shard_id)
|
108 |
+
|
109 |
+
# add the following code
|
110 |
+
if isinstance(param, BlockQuantScaleParameter):
|
111 |
+
weight_block_size = self.quant_method.quant_config.weight_block_size
|
112 |
+
block_n, _ = weight_block_size[0], weight_block_size[1]
|
113 |
+
shard_offset = (shard_offset + block_n - 1) // block_n
|
114 |
+
shard_size = (shard_size + block_n - 1) // block_n
|
115 |
+
# end of the modification
|
116 |
+
|
117 |
+
param.load_qkv_weight(loaded_weight=loaded_weight,
|
118 |
+
num_heads=self.num_kv_head_replicas,
|
119 |
+
shard_id=loaded_shard_id,
|
120 |
+
shard_offset=shard_offset,
|
121 |
+
shard_size=shard_size)
|
122 |
+
...
|
123 |
+
```
|
124 |
+
|
125 |
+
## Switching Between Thinking and Non-Thinking Mode
|
126 |
+
|
127 |
+
> [!TIP]
|
128 |
+
> The `enable_thinking` switch is also available in APIs created by vLLM and SGLang.
|
129 |
+
> Please refer to [our documentation](https://qwen.readthedocs.io/) for more details.
|
130 |
+
|
131 |
+
### `enable_thinking=True`
|
132 |
+
|
133 |
+
By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.
|
134 |
+
|
135 |
+
```python
|
136 |
+
text = tokenizer.apply_chat_template(
|
137 |
+
messages,
|
138 |
+
tokenize=False,
|
139 |
+
add_generation_prompt=True,
|
140 |
+
enable_thinking=True # True is the default value for enable_thinking
|
141 |
+
)
|
142 |
+
```
|
143 |
+
|
144 |
+
In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.
|
145 |
+
|
146 |
+
> [!NOTE]
|
147 |
+
> For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
|
148 |
+
|
149 |
+
|
150 |
+
### `enable_thinking=False`
|
151 |
+
|
152 |
+
We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.
|
153 |
+
|
154 |
+
```python
|
155 |
+
text = tokenizer.apply_chat_template(
|
156 |
+
messages,
|
157 |
+
tokenize=False,
|
158 |
+
add_generation_prompt=True,
|
159 |
+
enable_thinking=False # Setting enable_thinking=False disables thinking mode
|
160 |
+
)
|
161 |
+
```
|
162 |
+
|
163 |
+
In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.
|
164 |
+
|
165 |
+
> [!NOTE]
|
166 |
+
> For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
|
167 |
+
|
168 |
+
### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input
|
169 |
+
|
170 |
+
We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.
|
171 |
+
|
172 |
+
Here is an example of a multi-turn conversation:
|
173 |
+
|
174 |
+
```python
|
175 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
176 |
+
|
177 |
+
class QwenChatbot:
|
178 |
+
def __init__(self, model_name="Qwen/Qwen3-14B-FP8"):
|
179 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
180 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
181 |
+
self.history = []
|
182 |
+
|
183 |
+
def generate_response(self, user_input):
|
184 |
+
messages = self.history + [{"role": "user", "content": user_input}]
|
185 |
+
|
186 |
+
text = self.tokenizer.apply_chat_template(
|
187 |
+
messages,
|
188 |
+
tokenize=False,
|
189 |
+
add_generation_prompt=True
|
190 |
+
)
|
191 |
+
|
192 |
+
inputs = self.tokenizer(text, return_tensors="pt")
|
193 |
+
response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
|
194 |
+
response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
|
195 |
+
|
196 |
+
# Update history
|
197 |
+
self.history.append({"role": "user", "content": user_input})
|
198 |
+
self.history.append({"role": "assistant", "content": response})
|
199 |
+
|
200 |
+
return response
|
201 |
+
|
202 |
+
# Example Usage
|
203 |
+
if __name__ == "__main__":
|
204 |
+
chatbot = QwenChatbot()
|
205 |
+
|
206 |
+
# First input (without /think or /no_think tags, thinking mode is enabled by default)
|
207 |
+
user_input_1 = "How many r's in strawberries?"
|
208 |
+
print(f"User: {user_input_1}")
|
209 |
+
response_1 = chatbot.generate_response(user_input_1)
|
210 |
+
print(f"Bot: {response_1}")
|
211 |
+
print("----------------------")
|
212 |
+
|
213 |
+
# Second input with /no_think
|
214 |
+
user_input_2 = "Then, how many r's in blueberries? /no_think"
|
215 |
+
print(f"User: {user_input_2}")
|
216 |
+
response_2 = chatbot.generate_response(user_input_2)
|
217 |
+
print(f"Bot: {response_2}")
|
218 |
+
print("----------------------")
|
219 |
+
|
220 |
+
# Third input with /think
|
221 |
+
user_input_3 = "Really? /think"
|
222 |
+
print(f"User: {user_input_3}")
|
223 |
+
response_3 = chatbot.generate_response(user_input_3)
|
224 |
+
print(f"Bot: {response_3}")
|
225 |
+
```
|
226 |
+
|
227 |
+
> **Note**
|
228 |
+
> For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
|
229 |
+
> When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.
|
230 |
+
|
231 |
+
## Agentic Use
|
232 |
+
|
233 |
+
Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
|
234 |
+
|
235 |
+
To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
|
236 |
+
```python
|
237 |
+
from qwen_agent.agents import Assistant
|
238 |
+
|
239 |
+
# Define LLM
|
240 |
+
llm_cfg = {
|
241 |
+
'model': 'Qwen3-14B-FP8',
|
242 |
+
|
243 |
+
# Use the endpoint provided by Alibaba Model Studio:
|
244 |
+
# 'model_type': 'qwen_dashscope',
|
245 |
+
# 'api_key': os.getenv('DASHSCOPE_API_KEY'),
|
246 |
+
|
247 |
+
# Use a custom endpoint compatible with OpenAI API:
|
248 |
+
'model_server': 'http://localhost:8000/v1', # api_base
|
249 |
+
'api_key': 'EMPTY',
|
250 |
+
|
251 |
+
# Other parameters:
|
252 |
+
# 'generate_cfg': {
|
253 |
+
# # Add: When the response content is `<think>this is the thought</think>this is the answer;
|
254 |
+
# # Do not add: When the response has been separated by reasoning_content and content.
|
255 |
+
# 'thought_in_content': True,
|
256 |
+
# },
|
257 |
+
}
|
258 |
+
|
259 |
+
# Define Tools
|
260 |
+
tools = [
|
261 |
+
{'mcpServers': { # You can specify the MCP configuration file
|
262 |
+
'time': {
|
263 |
+
'command': 'uvx',
|
264 |
+
'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
|
265 |
+
},
|
266 |
+
"fetch": {
|
267 |
+
"command": "uvx",
|
268 |
+
"args": ["mcp-server-fetch"]
|
269 |
+
}
|
270 |
+
}
|
271 |
+
},
|
272 |
+
'code_interpreter', # Built-in tools
|
273 |
+
]
|
274 |
+
|
275 |
+
# Define Agent
|
276 |
+
bot = Assistant(llm=llm_cfg, function_list=tools)
|
277 |
+
|
278 |
+
# Streaming generation
|
279 |
+
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
|
280 |
+
for responses in bot.run(messages=messages):
|
281 |
+
pass
|
282 |
+
print(responses)
|
283 |
+
```
|
284 |
+
|
285 |
+
## Processing Long Texts
|
286 |
+
|
287 |
+
Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method.
|
288 |
+
|
289 |
+
YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks:
|
290 |
+
|
291 |
+
- Modifying the model files:
|
292 |
+
In the `config.json` file, add the `rope_scaling` fields:
|
293 |
+
```json
|
294 |
+
{
|
295 |
+
...,
|
296 |
+
"rope_scaling": {
|
297 |
+
"type": "yarn",
|
298 |
+
"factor": 4.0,
|
299 |
+
"original_max_position_embeddings": 32768
|
300 |
+
}
|
301 |
+
}
|
302 |
+
```
|
303 |
+
For `llama.cpp`, you need to regenerate the GGUF file after the modification.
|
304 |
+
|
305 |
+
- Passing command line arguments:
|
306 |
+
|
307 |
+
For `vllm`, you can use
|
308 |
+
```shell
|
309 |
+
vllm serve ... --rope-scaling '{"type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
|
310 |
+
```
|
311 |
+
|
312 |
+
For `sglang`, you can use
|
313 |
+
```shell
|
314 |
+
python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
|
315 |
+
```
|
316 |
+
|
317 |
+
For `llama-server` from `llama.cpp`, you can use
|
318 |
+
```shell
|
319 |
+
llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768
|
320 |
+
```
|
321 |
+
|
322 |
+
> [!IMPORTANT]
|
323 |
+
> If you encounter the following warning
|
324 |
+
> ```
|
325 |
+
> Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'}
|
326 |
+
> ```
|
327 |
+
> please upgrade `transformers>=4.51.0`.
|
328 |
+
|
329 |
+
> [!NOTE]
|
330 |
+
> All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
|
331 |
+
> We advise adding the `rope_scaling` configuration only when processing long contexts is required.
|
332 |
+
> It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0.
|
333 |
+
|
334 |
+
> [!NOTE]
|
335 |
+
> The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance.
|
336 |
+
|
337 |
+
> [!TIP]
|
338 |
+
> The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed.
|
339 |
+
|
340 |
+
## Best Practices
|
341 |
+
|
342 |
+
To achieve optimal performance, we recommend the following settings:
|
343 |
+
|
344 |
+
1. **Sampling Parameters**:
|
345 |
+
- For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
|
346 |
+
- For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
|
347 |
+
- For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
|
348 |
+
|
349 |
+
2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
|
350 |
+
|
351 |
+
3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
|
352 |
+
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
|
353 |
+
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
|
354 |
+
|
355 |
+
4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
|
356 |
+
|
357 |
+
### Citation
|
358 |
+
|
359 |
+
If you find our work helpful, feel free to give us a cite.
|
360 |
+
|
361 |
+
```
|
362 |
+
@misc{qwen3,
|
363 |
+
title = {Qwen3},
|
364 |
+
url = {https://qwenlm.github.io/blog/qwen3/},
|
365 |
+
author = {Qwen Team},
|
366 |
+
month = {April},
|
367 |
+
year = {2025}
|
368 |
+
}
|
369 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen3ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 5120,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 17408,
|
14 |
+
"max_position_embeddings": 40960,
|
15 |
+
"max_window_layers": 40,
|
16 |
+
"model_type": "qwen3",
|
17 |
+
"num_attention_heads": 40,
|
18 |
+
"num_hidden_layers": 40,
|
19 |
+
"num_key_value_heads": 8,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 1000000,
|
23 |
+
"sliding_window": null,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.51.0",
|
27 |
+
"use_cache": true,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 151936,
|
30 |
+
"quantization_config": {
|
31 |
+
"activation_scheme": "dynamic",
|
32 |
+
"fmt": "e4m3",
|
33 |
+
"quant_method": "fp8",
|
34 |
+
"weight_block_size": [
|
35 |
+
128,
|
36 |
+
128
|
37 |
+
]
|
38 |
+
}
|
39 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": 151645,
|
4 |
+
"pad_token_id": 151643,
|
5 |
+
"transformers_version": "4.51.3"
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c2f93f7639950a7246c54457482696b94aa0e6b1f49d2169f0422f56c1ed370
|
3 |
+
size 4922397616
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7831581bc7d03d77707df3ef10b8d90ee1998ee890ea0020b4a62d27079925ba
|
3 |
+
size 4955472248
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d57d1788fb339440b12c6917f7f88e18a5cb76e20f0bfacadd9e4e70a49b2a2a
|
3 |
+
size 4892558664
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4bf668aa6f8535dd467a9a3339116b536682b4241972054b783d514cbe84e50
|
3 |
+
size 1555824768
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16339276800
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.mlp.gate_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.mlp.up_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.k_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.0.self_attn.o_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.0.self_attn.q_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.0.self_attn.v_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.mlp.down_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.mlp.gate_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.1.mlp.up_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
33 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
34 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
35 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
36 |
+
"model.layers.1.self_attn.k_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
37 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
38 |
+
"model.layers.1.self_attn.o_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
39 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
40 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
41 |
+
"model.layers.1.self_attn.q_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
42 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
43 |
+
"model.layers.1.self_attn.v_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
44 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.10.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.10.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.10.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
53 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
54 |
+
"model.layers.10.self_attn.k_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
55 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
56 |
+
"model.layers.10.self_attn.o_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
57 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
58 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
59 |
+
"model.layers.10.self_attn.q_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
60 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
61 |
+
"model.layers.10.self_attn.v_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
62 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.11.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.11.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.11.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.11.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.11.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.11.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.11.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.12.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.12.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.12.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.12.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.12.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.12.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.12.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.13.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.13.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.13.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.13.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.13.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.13.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.13.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.14.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.14.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.14.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.14.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.14.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.14.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.14.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.15.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.15.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.15.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
141 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
142 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
143 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
144 |
+
"model.layers.15.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
145 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
146 |
+
"model.layers.15.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
147 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
148 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
149 |
+
"model.layers.15.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
150 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
151 |
+
"model.layers.15.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
152 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
153 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
154 |
+
"model.layers.16.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
155 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
156 |
+
"model.layers.16.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
157 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
158 |
+
"model.layers.16.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
159 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
160 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
161 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
162 |
+
"model.layers.16.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
163 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
164 |
+
"model.layers.16.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
165 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
166 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
167 |
+
"model.layers.16.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
168 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
169 |
+
"model.layers.16.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
170 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
171 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
172 |
+
"model.layers.17.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
173 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
174 |
+
"model.layers.17.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
175 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
176 |
+
"model.layers.17.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
177 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
178 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
179 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
180 |
+
"model.layers.17.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
181 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
182 |
+
"model.layers.17.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
183 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
184 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
185 |
+
"model.layers.17.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
186 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
187 |
+
"model.layers.17.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
188 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
189 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
190 |
+
"model.layers.18.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
191 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
192 |
+
"model.layers.18.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
193 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
194 |
+
"model.layers.18.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
195 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
196 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
197 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
198 |
+
"model.layers.18.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
199 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
200 |
+
"model.layers.18.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
201 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
202 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
203 |
+
"model.layers.18.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
204 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
205 |
+
"model.layers.18.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
206 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
207 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
208 |
+
"model.layers.19.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
209 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
210 |
+
"model.layers.19.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
211 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
212 |
+
"model.layers.19.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
213 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
214 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
215 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
216 |
+
"model.layers.19.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
217 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
218 |
+
"model.layers.19.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
219 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
220 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
221 |
+
"model.layers.19.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
222 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
223 |
+
"model.layers.19.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
224 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
225 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
226 |
+
"model.layers.2.mlp.down_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
227 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
228 |
+
"model.layers.2.mlp.gate_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
229 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
230 |
+
"model.layers.2.mlp.up_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
231 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
232 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
233 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
234 |
+
"model.layers.2.self_attn.k_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
235 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
236 |
+
"model.layers.2.self_attn.o_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
237 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
238 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
239 |
+
"model.layers.2.self_attn.q_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
240 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
241 |
+
"model.layers.2.self_attn.v_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
242 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
243 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
244 |
+
"model.layers.20.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
245 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
246 |
+
"model.layers.20.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
247 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
248 |
+
"model.layers.20.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
249 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
250 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
251 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
252 |
+
"model.layers.20.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
253 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
254 |
+
"model.layers.20.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
255 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
256 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
257 |
+
"model.layers.20.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
258 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
259 |
+
"model.layers.20.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
260 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
261 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
262 |
+
"model.layers.21.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
263 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
264 |
+
"model.layers.21.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
265 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
266 |
+
"model.layers.21.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
267 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
268 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
269 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
270 |
+
"model.layers.21.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
271 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
272 |
+
"model.layers.21.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
273 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
274 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
275 |
+
"model.layers.21.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
276 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
277 |
+
"model.layers.21.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
278 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
279 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
280 |
+
"model.layers.22.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
281 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
282 |
+
"model.layers.22.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
283 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
284 |
+
"model.layers.22.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
285 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
286 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
287 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
288 |
+
"model.layers.22.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
289 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
290 |
+
"model.layers.22.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
291 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
292 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
293 |
+
"model.layers.22.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
294 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
295 |
+
"model.layers.22.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
296 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
297 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
298 |
+
"model.layers.23.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
299 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
300 |
+
"model.layers.23.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
301 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
302 |
+
"model.layers.23.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
303 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
304 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
305 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
306 |
+
"model.layers.23.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
307 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
308 |
+
"model.layers.23.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
309 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
310 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
311 |
+
"model.layers.23.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
312 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
313 |
+
"model.layers.23.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
314 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
315 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
316 |
+
"model.layers.24.mlp.down_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
317 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
318 |
+
"model.layers.24.mlp.gate_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
319 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
320 |
+
"model.layers.24.mlp.up_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.24.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
326 |
+
"model.layers.24.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
327 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
328 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
329 |
+
"model.layers.24.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
330 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
331 |
+
"model.layers.24.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
332 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
333 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
334 |
+
"model.layers.25.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
335 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
336 |
+
"model.layers.25.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
337 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
338 |
+
"model.layers.25.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
339 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
340 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.25.self_attn.k_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.layers.25.self_attn.o_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
345 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
346 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
347 |
+
"model.layers.25.self_attn.q_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
348 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
349 |
+
"model.layers.25.self_attn.v_proj.weight_scale_inv": "model-00002-of-00004.safetensors",
|
350 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
351 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
352 |
+
"model.layers.26.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
353 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
354 |
+
"model.layers.26.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
355 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
356 |
+
"model.layers.26.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
357 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
358 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
359 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
360 |
+
"model.layers.26.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
361 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
362 |
+
"model.layers.26.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
363 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
364 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
365 |
+
"model.layers.26.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
366 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
367 |
+
"model.layers.26.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
368 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
369 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
370 |
+
"model.layers.27.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
371 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
372 |
+
"model.layers.27.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
373 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
374 |
+
"model.layers.27.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
375 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
376 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
377 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
378 |
+
"model.layers.27.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
379 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
380 |
+
"model.layers.27.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
381 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
382 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
383 |
+
"model.layers.27.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
384 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
385 |
+
"model.layers.27.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
386 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
387 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
388 |
+
"model.layers.28.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
389 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
390 |
+
"model.layers.28.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
391 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
392 |
+
"model.layers.28.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
393 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
394 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
395 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
396 |
+
"model.layers.28.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
397 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
398 |
+
"model.layers.28.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
399 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
400 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
401 |
+
"model.layers.28.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
402 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
403 |
+
"model.layers.28.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
404 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
405 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
406 |
+
"model.layers.29.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
407 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
408 |
+
"model.layers.29.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
409 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
410 |
+
"model.layers.29.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
411 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
412 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
413 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
414 |
+
"model.layers.29.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
415 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
416 |
+
"model.layers.29.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
417 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
418 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
419 |
+
"model.layers.29.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
420 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
421 |
+
"model.layers.29.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
422 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
424 |
+
"model.layers.3.mlp.down_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
425 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
426 |
+
"model.layers.3.mlp.gate_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
427 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
428 |
+
"model.layers.3.mlp.up_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
429 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
430 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
431 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
432 |
+
"model.layers.3.self_attn.k_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
433 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
434 |
+
"model.layers.3.self_attn.o_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
435 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
436 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
437 |
+
"model.layers.3.self_attn.q_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
438 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
439 |
+
"model.layers.3.self_attn.v_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
440 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
441 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
442 |
+
"model.layers.30.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
443 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
444 |
+
"model.layers.30.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
445 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
446 |
+
"model.layers.30.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
447 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
448 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
449 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
450 |
+
"model.layers.30.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
451 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
452 |
+
"model.layers.30.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
453 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
454 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
455 |
+
"model.layers.30.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
456 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
457 |
+
"model.layers.30.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
458 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
459 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
460 |
+
"model.layers.31.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
461 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
462 |
+
"model.layers.31.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
463 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
464 |
+
"model.layers.31.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
465 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
466 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
467 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
468 |
+
"model.layers.31.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
469 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
470 |
+
"model.layers.31.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
471 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
472 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
473 |
+
"model.layers.31.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
474 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
475 |
+
"model.layers.31.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
476 |
+
"model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
477 |
+
"model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
478 |
+
"model.layers.32.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
479 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
480 |
+
"model.layers.32.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
481 |
+
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
482 |
+
"model.layers.32.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
483 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
484 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
485 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
486 |
+
"model.layers.32.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
487 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
488 |
+
"model.layers.32.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
489 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
490 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
491 |
+
"model.layers.32.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
492 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
493 |
+
"model.layers.32.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
494 |
+
"model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
495 |
+
"model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
496 |
+
"model.layers.33.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
497 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
498 |
+
"model.layers.33.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
499 |
+
"model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
500 |
+
"model.layers.33.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
501 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
502 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
503 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
504 |
+
"model.layers.33.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
505 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
506 |
+
"model.layers.33.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
507 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
508 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
509 |
+
"model.layers.33.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
510 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
511 |
+
"model.layers.33.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
512 |
+
"model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
513 |
+
"model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
514 |
+
"model.layers.34.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
515 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
516 |
+
"model.layers.34.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
517 |
+
"model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
518 |
+
"model.layers.34.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
519 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
520 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
521 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
522 |
+
"model.layers.34.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
523 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
524 |
+
"model.layers.34.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
525 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
526 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
527 |
+
"model.layers.34.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
528 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
529 |
+
"model.layers.34.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
530 |
+
"model.layers.35.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
531 |
+
"model.layers.35.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
532 |
+
"model.layers.35.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
533 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
534 |
+
"model.layers.35.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
535 |
+
"model.layers.35.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
536 |
+
"model.layers.35.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
537 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
538 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
539 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
540 |
+
"model.layers.35.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
541 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
542 |
+
"model.layers.35.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
543 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
544 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
545 |
+
"model.layers.35.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
546 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
547 |
+
"model.layers.35.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
548 |
+
"model.layers.36.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
549 |
+
"model.layers.36.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
550 |
+
"model.layers.36.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
551 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
552 |
+
"model.layers.36.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
553 |
+
"model.layers.36.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
554 |
+
"model.layers.36.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
555 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
556 |
+
"model.layers.36.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
557 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
558 |
+
"model.layers.36.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
559 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
560 |
+
"model.layers.36.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
561 |
+
"model.layers.36.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
562 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
563 |
+
"model.layers.36.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
564 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
565 |
+
"model.layers.36.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
566 |
+
"model.layers.37.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
567 |
+
"model.layers.37.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
568 |
+
"model.layers.37.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
569 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
570 |
+
"model.layers.37.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
571 |
+
"model.layers.37.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
572 |
+
"model.layers.37.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
573 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
574 |
+
"model.layers.37.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
575 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
576 |
+
"model.layers.37.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
577 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
578 |
+
"model.layers.37.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
579 |
+
"model.layers.37.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
580 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
581 |
+
"model.layers.37.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
582 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
583 |
+
"model.layers.37.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
584 |
+
"model.layers.38.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
585 |
+
"model.layers.38.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
586 |
+
"model.layers.38.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
587 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
588 |
+
"model.layers.38.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
589 |
+
"model.layers.38.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
590 |
+
"model.layers.38.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
591 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
592 |
+
"model.layers.38.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
593 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
594 |
+
"model.layers.38.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
595 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
596 |
+
"model.layers.38.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
597 |
+
"model.layers.38.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
598 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
599 |
+
"model.layers.38.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
600 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
601 |
+
"model.layers.38.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
602 |
+
"model.layers.39.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
603 |
+
"model.layers.39.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
604 |
+
"model.layers.39.mlp.down_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
605 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
606 |
+
"model.layers.39.mlp.gate_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
607 |
+
"model.layers.39.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
608 |
+
"model.layers.39.mlp.up_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
609 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
610 |
+
"model.layers.39.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
611 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
612 |
+
"model.layers.39.self_attn.k_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
613 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
614 |
+
"model.layers.39.self_attn.o_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
615 |
+
"model.layers.39.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
616 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
617 |
+
"model.layers.39.self_attn.q_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
618 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
619 |
+
"model.layers.39.self_attn.v_proj.weight_scale_inv": "model-00003-of-00004.safetensors",
|
620 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
621 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
622 |
+
"model.layers.4.mlp.down_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
623 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
624 |
+
"model.layers.4.mlp.gate_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
625 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
626 |
+
"model.layers.4.mlp.up_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
627 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
628 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
629 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
630 |
+
"model.layers.4.self_attn.k_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
631 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
632 |
+
"model.layers.4.self_attn.o_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
633 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
634 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
635 |
+
"model.layers.4.self_attn.q_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
636 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
637 |
+
"model.layers.4.self_attn.v_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
638 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
639 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
640 |
+
"model.layers.5.mlp.down_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
641 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
642 |
+
"model.layers.5.mlp.gate_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
643 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
644 |
+
"model.layers.5.mlp.up_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
645 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
646 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
647 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
648 |
+
"model.layers.5.self_attn.k_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
649 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
650 |
+
"model.layers.5.self_attn.o_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
651 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
652 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
653 |
+
"model.layers.5.self_attn.q_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
654 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
655 |
+
"model.layers.5.self_attn.v_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
656 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
657 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
658 |
+
"model.layers.6.mlp.down_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
659 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
660 |
+
"model.layers.6.mlp.gate_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
661 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
662 |
+
"model.layers.6.mlp.up_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
663 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
664 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
665 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
666 |
+
"model.layers.6.self_attn.k_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
667 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
668 |
+
"model.layers.6.self_attn.o_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
669 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
670 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
671 |
+
"model.layers.6.self_attn.q_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
672 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
673 |
+
"model.layers.6.self_attn.v_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
674 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
675 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
676 |
+
"model.layers.7.mlp.down_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
677 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
678 |
+
"model.layers.7.mlp.gate_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
679 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
680 |
+
"model.layers.7.mlp.up_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
681 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
682 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
683 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
684 |
+
"model.layers.7.self_attn.k_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
685 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
686 |
+
"model.layers.7.self_attn.o_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
687 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
688 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
689 |
+
"model.layers.7.self_attn.q_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
690 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
691 |
+
"model.layers.7.self_attn.v_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
692 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
693 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
694 |
+
"model.layers.8.mlp.down_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
695 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
696 |
+
"model.layers.8.mlp.gate_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
697 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
698 |
+
"model.layers.8.mlp.up_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
699 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
700 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
701 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
702 |
+
"model.layers.8.self_attn.k_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
703 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
704 |
+
"model.layers.8.self_attn.o_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
705 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
706 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
707 |
+
"model.layers.8.self_attn.q_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
708 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
709 |
+
"model.layers.8.self_attn.v_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
710 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
711 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
712 |
+
"model.layers.9.mlp.down_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
713 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
714 |
+
"model.layers.9.mlp.gate_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
715 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
716 |
+
"model.layers.9.mlp.up_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
717 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
718 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
719 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
720 |
+
"model.layers.9.self_attn.k_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
721 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
722 |
+
"model.layers.9.self_attn.o_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
723 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
724 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
725 |
+
"model.layers.9.self_attn.q_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
726 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
727 |
+
"model.layers.9.self_attn.v_proj.weight_scale_inv": "model-00001-of-00004.safetensors",
|
728 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
729 |
+
}
|
730 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
tokenizer_config.json
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
|
231 |
+
"clean_up_tokenization_spaces": false,
|
232 |
+
"eos_token": "<|im_end|>",
|
233 |
+
"errors": "replace",
|
234 |
+
"model_max_length": 131072,
|
235 |
+
"pad_token": "<|endoftext|>",
|
236 |
+
"split_special_tokens": false,
|
237 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
238 |
+
"unk_token": null
|
239 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|