yangapku commited on
Commit
37f3f67
·
verified ·
1 Parent(s): 6e71f0f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -29
README.md CHANGED
@@ -93,7 +93,7 @@ print("thinking content:", thinking_content)
93
  print("content:", content)
94
  ```
95
 
96
- For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.4` or to create an OpenAI-compatible API endpoint:
97
  - SGLang:
98
  ```shell
99
  python -m sglang.launch_server --model-path Qwen/Qwen3-32B-FP8 --reasoning-parser qwen3
@@ -103,39 +103,16 @@ For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.4` or to create
103
  vllm serve Qwen/Qwen3-32B-FP8 --enable-reasoning --reasoning-parser deepseek_r1
104
  ```
105
 
106
- For local use, applications such as llama.cpp, Ollama, LMStudio, and MLX-LM have also supported Qwen3.
107
 
108
  ## Note on FP8
109
 
110
  For convenience and performance, we have provided `fp8`-quantized model checkpoint for Qwen3, whose name ends with `-FP8`. The quantization method is fine-grained `fp8` quantization with block size of 128. You can find more details in the `quantization_config` field in `config.json`.
111
 
112
- You can use the Qwen3-32B-FP8 model with serveral inference frameworks, including `transformers`, `vllm`, and `sglang`, as the original bfloat16 model.
113
  However, please pay attention to the following known issues:
114
  - `transformers`:
115
  - there are currently issues with the "fine-grained fp8" method in `transformers` for distributed inference. You may need to set the environment variable `CUDA_LAUNCH_BLOCKING=1` if multiple devices are used in inference.
116
- - vLLM:
117
- - there are currently compatibility issues with `vllm`. For a quick fix, you should make the following changes to `vllm/vllm/model_executor/layers/linear.py`:
118
- ```python
119
- # these changes are in QKVParallelLinear.weight_loader_v2() of vllm/vllm/model_executor/layers/linear.py
120
- ...
121
- shard_offset = self._get_shard_offset_mapping(loaded_shard_id)
122
- shard_size = self._get_shard_size_mapping(loaded_shard_id)
123
-
124
- # add the following code
125
- if isinstance(param, BlockQuantScaleParameter):
126
- weight_block_size = self.quant_method.quant_config.weight_block_size
127
- block_n, _ = weight_block_size[0], weight_block_size[1]
128
- shard_offset = (shard_offset + block_n - 1) // block_n
129
- shard_size = (shard_size + block_n - 1) // block_n
130
- # end of the modification
131
-
132
- param.load_qkv_weight(loaded_weight=loaded_weight,
133
- num_heads=self.num_kv_head_replicas,
134
- shard_id=loaded_shard_id,
135
- shard_offset=shard_offset,
136
- shard_size=shard_size)
137
- ...
138
- ```
139
 
140
  ## Switching Between Thinking and Non-Thinking Mode
141
 
@@ -309,7 +286,7 @@ YaRN is currently supported by several inference frameworks, e.g., `transformers
309
  {
310
  ...,
311
  "rope_scaling": {
312
- "type": "yarn",
313
  "factor": 4.0,
314
  "original_max_position_embeddings": 32768
315
  }
@@ -321,12 +298,12 @@ YaRN is currently supported by several inference frameworks, e.g., `transformers
321
 
322
  For `vllm`, you can use
323
  ```shell
324
- vllm serve ... --rope-scaling '{"type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
325
  ```
326
 
327
  For `sglang`, you can use
328
  ```shell
329
- python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
330
  ```
331
 
332
  For `llama-server` from `llama.cpp`, you can use
 
93
  print("content:", content)
94
  ```
95
 
96
+ For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
97
  - SGLang:
98
  ```shell
99
  python -m sglang.launch_server --model-path Qwen/Qwen3-32B-FP8 --reasoning-parser qwen3
 
103
  vllm serve Qwen/Qwen3-32B-FP8 --enable-reasoning --reasoning-parser deepseek_r1
104
  ```
105
 
106
+ For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
107
 
108
  ## Note on FP8
109
 
110
  For convenience and performance, we have provided `fp8`-quantized model checkpoint for Qwen3, whose name ends with `-FP8`. The quantization method is fine-grained `fp8` quantization with block size of 128. You can find more details in the `quantization_config` field in `config.json`.
111
 
112
+ You can use the Qwen3-32B-FP8 model with serveral inference frameworks, including `transformers`, `sglang`, and `vllm`, as the original bfloat16 model.
113
  However, please pay attention to the following known issues:
114
  - `transformers`:
115
  - there are currently issues with the "fine-grained fp8" method in `transformers` for distributed inference. You may need to set the environment variable `CUDA_LAUNCH_BLOCKING=1` if multiple devices are used in inference.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
  ## Switching Between Thinking and Non-Thinking Mode
118
 
 
286
  {
287
  ...,
288
  "rope_scaling": {
289
+ "rope_type": "yarn",
290
  "factor": 4.0,
291
  "original_max_position_embeddings": 32768
292
  }
 
298
 
299
  For `vllm`, you can use
300
  ```shell
301
+ vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
302
  ```
303
 
304
  For `sglang`, you can use
305
  ```shell
306
+ python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
307
  ```
308
 
309
  For `llama-server` from `llama.cpp`, you can use