from transformers.configuration_utils import PretrainedConfig class DakitariInstructConfig(PretrainedConfig): model_type = "dakitari_instruct" def __init__( self, vocab_size=30522, n_positions=512, n_embd=768, # increased embedding dimension n_layer=24, # increased number of layers n_head=8, # increased attention heads if desired n_inner=3072, # increased feed-forward dimension pad_token_id=0, bos_token_id=1, eos_token_id=2, activation_function="gelu", resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, adapter_bottleneck=128, # optionally increase adapter capacity model_name="DakitariInstruct-v1.1", creator="Quantum Leap AI company", country="Kenya, Africa", healthcare_purpose="Assist healthcare professionals and patients with accurate medical information", **kwargs ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.activation_function = activation_function self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.adapter_bottleneck = adapter_bottleneck self.model_name = model_name self.creator = creator self.country = country self.healthcare_purpose = healthcare_purpose super().__init__(**kwargs)