--- base_model: - mistralai/Mistral-Small-3.1-24B-Instruct-2503 --- ## Evaluation Server command: ``` vllm serve nm-testing/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic ``` Eval command: ``` python -m eval.run eval_vllm --model_name nm-testing/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic --url http://0.0.0.0:9000 --output_dir output/ --eval_name "chartqa" Waiting for VLLM server to come online at http://0.0.0.0:9000/health ... Timeout is 120s Waiting for server (0s) ... Server is up! Loading lmms-lab/ChartQA [test]: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2500/2500 [00:11<00:00, 210.68it/s] Querying model: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2500/2500 [06:53<00:00, 6.05it/s] 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2500/2500 [00:00<00:00, 22477.08it/s] ================================================================================ Metrics: { "explicit_prompt_relaxed_correctness": 0.8136, "anywhere_in_answer_relaxed_correctness": 0.8144 } ================================================================================ ``` ## Creation ```python from transformers import AutoProcessor, AutoModelForImageTextToText from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503" # Load model. model = AutoModelForImageTextToText.from_pretrained( MODEL_ID, device_map="auto", torch_dtype="auto" ) processor = AutoProcessor.from_pretrained(MODEL_ID) # Configure the quantization algorithm and scheme. # In this case, we: # * quantize the weights to fp8 with per channel via ptq # * quantize the activations to fp8 with dynamic per token recipe = QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_tower.*"], ) # Apply quantization and save to disk in compressed-tensors format. SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-dynamic" oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR) processor.save_pretrained(SAVE_DIR) # Confirm generations of the quantized model look sane. print("========== SAMPLE GENERATION ==============") input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda") output = model.generate(input_ids, max_new_tokens=20) print(processor.decode(output[0])) print("==========================================") ```