--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-7B/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-7B tags: - chat - neuralmagic - llmcompressor - int4 --- # Qwen2.5-7B-quantized.w4a16 ## Model Overview - **Model Architecture:** Qwen2 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B), this models is intended for assistant-like chat. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). - **Release Date:** 10/18/2024 - **Version:** 1.0 - **License(s):** [apache-2.0](https://huggingface.co/Qwen/Qwen2.5-7B/blob/main/LICENSE) - **Model Developers:** Neural Magic ### Model Optimizations This model was obtained by quantizing the weights of [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) to INT4 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only the weights of the linear operators within transformers blocks are quantized. Weights are quantized using a symmetric per-group scheme, with group size 128. The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. ## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "RedHatAI/Qwen2.5-7B-quantized.w4a16" number_gpus = 1 max_model_len = 8192 sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = "Give me a short introduction to large language model." llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len) outputs = llm.generate(prompt, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation
Creation details This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers import oneshot from datasets import load_dataset # Load model model_stub = "Qwen/Qwen2.5-7B" model_name = model_stub.split("/")[-1] num_samples = 3072 max_seq_len = 8192 tokenizer = AutoTokenizer.from_pretrained(model_stub) model = AutoModelForCausalLM.from_pretrained( model_stub, device_map="auto", torch_dtype="auto", ) def preprocess_fn(example): return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") ds = ds.map(preprocess_fn) # Configure the quantization algorithm and scheme recipe = GPTQModifier( targets="Linear", scheme="W4A16", ignore=["lm_head"], sequential_targets=["Qwen2DecoderLayer"], dampening_frac=0.1, ) # Apply quantization oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, ) # Save to disk in compressed-tensors format save_path = model_name + "-quantized.w4a16" model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) print(f"Model and tokenizer saved to: {save_path}") ```
## Evaluation The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/387Bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 387Bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/Qwen2.5-7B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,add_bos_token=True,max_model_len=4096,enable_chunk_prefill=True,tensor_parallel_size=1 \ --tasks openllm \ --batch_size auto ``` ### Accuracy #### Open LLM Leaderboard evaluation scores
Benchmark Qwen2.5-7B Qwen2.5-7B-quantized.w4a16
(this model)
Recovery
MMLU (5-shot) 74.15 73.47 99.1%
ARC Challenge (25-shot) 59.39 58.70 98.9%
GSM-8K (5-shot, strict-match) 79.76 79.08 99.1%
Hellaswag (10-shot) 80.17 79.39 99.0%
Winogrande (5-shot) 75.69 76.01 100.4%
TruthfulQA (0-shot, mc2) 56.38 55.48 98.4%
Average 70.92 70.35 99.2%