SCANSKY commited on
Commit
0ae5234
·
verified ·
1 Parent(s): 364ec9d

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +39 -36
handler.py CHANGED
@@ -20,43 +20,46 @@ class EndpointHandler:
20
  except Exception as e:
21
  raise ValueError(f"Error during preprocessing: {str(e)}")
22
 
23
- def inference(self, text_input):
24
- """
25
- Perform inference using the BERTopic model.
26
- - Combine all sentences into a single document and find shared topics.
27
- """
28
- try:
29
- # Split text into sentences (assuming one sentence per line)
30
- sentences = text_input.strip().split('\n')
31
-
32
- # Combine all sentences into a single document
33
- combined_document = " ".join(sentences)
34
-
35
- # Perform topic inference on the combined document
36
- topics, probabilities = self.topic_model.transform([combined_document])
37
-
38
- # Prepare the results
39
- results = []
40
- for topic, prob in zip(topics, probabilities):
41
- topic_info = self.topic_model.get_topic(topic)
42
- topic_words = [word for word, _ in topic_info] if topic_info else []
43
-
44
- # Get custom label for the topic
45
- if hasattr(self.topic_model, "custom_labels_") and self.topic_model.custom_labels_ is not None:
46
- custom_label = self.topic_model.custom_labels_[topic + 1]
47
- else:
48
- custom_label = f"Topic {topic}" # Fallback label
49
-
50
- results.append({
51
- "topic": int(topic),
52
- "probability": float(prob),
53
- "top_words": topic_words[:5], # Top 5 words
54
- "customLabel": custom_label # Add custom label
55
- })
 
 
 
 
56
 
57
- return results
58
- except Exception as e:
59
- raise ValueError(f"Error during inference: {str(e)}") def postprocess(self, results):
60
  """
61
  Postprocess the inference results into a JSON-serializable list.
62
  """
 
20
  except Exception as e:
21
  raise ValueError(f"Error during preprocessing: {str(e)}")
22
 
23
+ def inference(self, text_input):
24
+ """
25
+ Perform inference using the BERTopic model.
26
+ - Combine all sentences into a single document and find shared topics.
27
+ """
28
+ try:
29
+ # Split text into sentences (assuming one sentence per line)
30
+ sentences = text_input.strip().split('\n')
31
+
32
+ # Combine all sentences into a single document
33
+ combined_document = " ".join(sentences)
34
+
35
+ # Perform topic inference on the combined document
36
+ topics, probabilities = self.topic_model.transform([combined_document])
37
+
38
+ # Prepare the results
39
+ results = []
40
+ for topic, prob in zip(topics, probabilities):
41
+ topic_info = self.topic_model.get_topic(topic)
42
+ topic_words = [word for word, _ in topic_info] if topic_info else []
43
+
44
+ # Get custom label for the topic
45
+ if hasattr(self.topic_model, "custom_labels_") and self.topic_model.custom_labels_ is not None:
46
+ custom_label = self.topic_model.custom_labels_[topic + 1]
47
+ else:
48
+ custom_label = f"Topic {topic}" # Fallback label
49
+
50
+ results.append({
51
+ "topic": int(topic),
52
+ "probability": float(prob),
53
+ "top_words": topic_words[:5], # Top 5 words
54
+ "customLabel": custom_label # Add custom label
55
+ })
56
+
57
+ return results
58
+ except Exception as e:
59
+ raise ValueError(f"Error during inference: {str(e)}")
60
 
61
+
62
+ def postprocess(self, results):
 
63
  """
64
  Postprocess the inference results into a JSON-serializable list.
65
  """