Create handler.py
Browse files- handler.py +80 -0
handler.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from bertopic import BERTopic
|
3 |
+
|
4 |
+
class EndpointHandler:
|
5 |
+
def __init__(self, model_path="SCANSKY/BERTopic-Tourism-Hindi"):
|
6 |
+
"""
|
7 |
+
Initialize the handler. Load the BERTopic model from Hugging Face.
|
8 |
+
"""
|
9 |
+
self.topic_model = BERTopic.load(model_path)
|
10 |
+
|
11 |
+
def preprocess(self, data):
|
12 |
+
"""
|
13 |
+
Preprocess the incoming request data.
|
14 |
+
- Extract text input from the request.
|
15 |
+
"""
|
16 |
+
try:
|
17 |
+
# Directly work with the incoming data dictionary
|
18 |
+
text_input = data.get("inputs", "")
|
19 |
+
return text_input
|
20 |
+
except Exception as e:
|
21 |
+
raise ValueError(f"Error during preprocessing: {str(e)}")
|
22 |
+
|
23 |
+
def inference(self, text_input):
|
24 |
+
"""
|
25 |
+
Perform inference using the BERTopic model.
|
26 |
+
- Process the text input and generate topic predictions.
|
27 |
+
"""
|
28 |
+
try:
|
29 |
+
# Split text into documents (assuming one document per line)
|
30 |
+
docs = text_input.strip().split('\n')
|
31 |
+
|
32 |
+
# Perform topic inference
|
33 |
+
topics, probabilities = self.topic_model.transform(docs)
|
34 |
+
|
35 |
+
# Prepare the results
|
36 |
+
results = []
|
37 |
+
for topic, prob in zip(topics, probabilities):
|
38 |
+
topic_info = self.topic_model.get_topic(topic)
|
39 |
+
topic_words = [word for word, _ in topic_info] if topic_info else []
|
40 |
+
|
41 |
+
# Get custom label for the topic (with fallback if custom_labels_ is not available)
|
42 |
+
if hasattr(self.topic_model, "custom_labels_") and self.topic_model.custom_labels_ is not None:
|
43 |
+
custom_label = self.topic_model.custom_labels_[topic + 1]
|
44 |
+
else:
|
45 |
+
custom_label = f"Topic {topic}" # Fallback label
|
46 |
+
|
47 |
+
results.append({
|
48 |
+
"topic": int(topic),
|
49 |
+
"probability": float(prob),
|
50 |
+
"top_words": topic_words[:5], # Top 5 words
|
51 |
+
"customLabel": custom_label # Add custom label
|
52 |
+
})
|
53 |
+
|
54 |
+
return results
|
55 |
+
except Exception as e:
|
56 |
+
raise ValueError(f"Error during inference: {str(e)}")
|
57 |
+
|
58 |
+
def postprocess(self, results):
|
59 |
+
"""
|
60 |
+
Postprocess the inference results into a JSON-serializable list.
|
61 |
+
"""
|
62 |
+
return results # Directly returning the list of results
|
63 |
+
|
64 |
+
def __call__(self, data):
|
65 |
+
"""
|
66 |
+
Handle the incoming request.
|
67 |
+
"""
|
68 |
+
try:
|
69 |
+
# Preprocess the data
|
70 |
+
text_input = self.preprocess(data)
|
71 |
+
|
72 |
+
# Perform inference
|
73 |
+
results = self.inference(text_input)
|
74 |
+
|
75 |
+
# Postprocess the results
|
76 |
+
response = self.postprocess(results)
|
77 |
+
|
78 |
+
return response
|
79 |
+
except Exception as e:
|
80 |
+
return [{"error": str(e)}] # Returning error as a list with a dictionary
|