--- license: apache-2.0 license_name: sla0044 pipeline_tag: keypoint-detection --- # Hand landmarks quantized ## **Use case** : `Pose estimation` # Model description Hand landmarks is a single pose estimation model targeted for real-time processing implemented in Tensorflow. The model is quantized in int8 format using tensorflow lite converter. ## Network information | Network information | Value | |-------------------------|-----------------| | Framework | TensorFlow Lite | | Quantization | int8 | | Provenance | https://github.com/PINTO0309/PINTO_model_zoo/tree/main/033_Hand_Detection_and_Tracking | Paper | https://storage.googleapis.com/mediapipe-assets/Model%20Card%20Hand%20Tracking%20(Lite_Full)%20with%20Fairness%20Oct%202021.pdf | ## Networks inputs / outputs With an image resolution of NxM with K keypoints to detect : | Input Shape | Description | | ----- | ----------- | | (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 | | Output Shape | Description | | ----- | ----------- | | (1, Kx3) | FLOAT values Where Kx3 are the (x,y,conf) values of each keypoints | ## Recommended Platforms | Platform | Supported | Recommended | |----------|-----------|-------------| | STM32L0 | [] | [] | | STM32L4 | [] | [] | | STM32U5 | [] | [] | | STM32H7 | [] | [] | | STM32MP1 | [x] | [] | | STM32MP2 | [x] | [x] | | STM32N6 | [x] | [x] | # Performances ## Metrics Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option. ### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset) |Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version | |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------| | [hand_landmarks](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/hand_landmarks/Public_pretrainedmodel_custom_dataset/custom_dataset_hands_21kpts/hand_landmarks_full_224_int8_pc.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 1739.5 | 0.0 | 3283.38 | 10.0.0 | 2.0.0 | ### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset) | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version | |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------| | [hand_landmarks](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/hand_landmarks/Public_pretrainedmodel_custom_dataset/custom_dataset_hands_21kpts/hand_landmarks_full_224_int8_pc.tflite) | custom_dataset_hands_21kpts | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 20.75 | 48.19 | 10.0.0 | 2.0.0 |