--- license: other license_name: sla0044 license_link: >- https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/LICENSE.md pipeline_tag: image-classification --- # ST MNIST v1 ## **Use case** : `Image classification` # Model description This folder contains a custom model ST-MNIST for MNIST type datasets. ST-MNIST model is a depthwise separable convolutional based model architecture and can be used for different MNIST use-cases, e.g. alphabet recognition, digit recognition, or fashion MNIST etc. ST-MNIST model accepts an input shape of 28 x 28, which is standard for MNIST type datasets. The pretrained model is also quantized in int8 using tensorflow lite converter. ## Network information | Network Information | Value | |-------------------------|-----------------| | Framework | TensorFlow Lite | | Quantization | int8 | ## Network inputs / outputs For an image resolution of 28x28 and 36 classes : 10 integers (from 0-9) and 26 alphabets (upper-case A-Z) | Input Shape | Description | | ----- | ----------- | | (1, 28, 28, 1) | Single 28x28 grey-scale image with UINT8 values between 0 and 255 | | Output Shape | Description | | ----- | ----------- | | (1, 36) | Per-class confidence for 36 classes in FLOAT32| ## Recommended Platforms | Platform | Supported | Recommended | |----------|-----------|-----------| | STM32L0 |[]|[]| | STM32L4 |[x]|[x]| | STM32U5 |[x]|[x]| | STM32H7 |[x]|[x]| | STM32MP1 |[x]|[]| | STM32MP2 |[x]|[]| | STM32N6 |[x]|[]| # Performances ## Metrics Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option. ### Reference **MCU** memory footprint based on EMNIST-Byclass dataset (see Accuracy for details on dataset) | Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version | |-------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------| | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | STM32H7 | 17.21 KiB | 4.49 KiB | 10.08 KiB | 46.8 KiB | 21.7 KiB | 56.88 KiB | 10.0.0 | ### Reference **MCU** inference time based on EMNIST-Byclass dataset (see Accuracy for details on dataset) | Model | Format | Resolution | Board | Frequency | Inference time (ms) | STM32Cube.AI version | |-------------------|--------|------------|------------------|---------------|---------------------|-----------------------| | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | STM32H747I-DISCO | 400 MHz | 3.41 ms | 10.0.0 | ### Reference **MPU** inference time based on EMNIST-Byclass dataset (see Accuracy for details on dataset) | Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework | |---------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------| | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel** | STM32MP257F-DK2 | 2 CPU | 1500 MHz | 0.31 ms | 0 | 0 | 100 | v5.1.0 | TensorFlowLite 2.11.0 | | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 0.69 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 | | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1.070 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 | ** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization** ### Accuracy with EMNIST-Byclass dataset Dataset details: [link](https://www.nist.gov/itl/products-and-services/emnist-dataset) , by_class, digits from [0-9] and capital letters [A-Z]. Number of classes: 36, Number of train images: 533,993, Number of test images: 89,264. | Model | Format | Resolution | Top 1 Accuracy | |-------|--------|------------|----------------| | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs.h5) | Float | 28x28x1 | 91.89 % | | [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | 91.47 % | Following we provide the confusion matrix for the model with Float32 weights. ![plot](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/doc/img/st_emnist_by_class_confusion_matrix.png) Following we provide the confusion matrix for the quantized model with INT8 weights. ![plot](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/doc/img/st_emnist_by_class_confusion_matrix_int8.png) ## Retraining and Integration in a simple example: Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services) # References [1] "EMNIST : NIST Special Dataset," [Online]. Available: https://www.nist.gov/itl/products-and-services/emnist-dataset. [2] "EMNIST: an extension of MNIST to handwritten letters". https://arxiv.org/abs/1702.05373