File size: 8,558 Bytes
2e2a204
6312d75
2e2a204
 
 
 
 
 
 
 
f18c45c
2e2a204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6312d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2a204
 
 
6312d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2a204
6312d75
2e2a204
 
 
 
 
6312d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2a204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
license_name: apache-2.0
language:
- en
pipeline_tag: image-text-to-text
tags:
- multimodal
library_name: transformers
base_model:
- Sapnous/Sapnous-6B
license: apache-2.0
---

![icon.png](https://cdn-uploads.huggingface.co/production/uploads/675d3ca88d0f15d76e49d5ea/YhcU9ACkEsJXPAgQZz1bX.png)


# Sapnous-6B: A Vision-Language Model for Enhanced World Perception

Sapnous-6B is a state-of-the-art vision-language model designed to enhance perception and understanding of the world through advanced multimodal capabilities. This model builds upon the success of previous vision-language architectures while introducing novel improvements in performance and efficiency.

## Model Architecture

- **Base Architecture**: 6B parameters
- **Hidden Size**: 4096
- **Attention Heads**: 32
- **Key/Value Heads**: 8
- **Hidden Layers**: 28
- **Window Size**: 32768
- **Vision Encoder**:
  - Depth: 32 layers
  - Hidden Size: 1280
  - Attention Heads: 16
  - Patch Size: 14x14
  - Window Size: 112

## Scores


---

## **📊 Benchmark Results**  

### **Multimodal Benchmarks**  
| Benchmark                  | InternVL2.5-8B | MiniCPM-o 2.6 | GPT-4o-mini | Qwen2-VL-7B | Qwen2.5-VL-7B | **Sapnous-MoE (Updated)** | **Sapnous-6B** |
|----------------------------|---------------|--------------|-------------|-------------|---------------|-----------------|-----------------|
| MMMU_val                  | 56            | 50.4         | **60**      | 54.1        | 58.6          | **64.4**      | **60.2**      |
| MMMU-Pro_val              | 34.3          | -            | 37.6        | 30.5        | 41.0          | **44.9**      | **40.7**      |
| DocVQA_test               | 93            | 93           | -           | 94.5        | **95.7**      | **97.8**     | **95.6**      |
| InfoVQA_test              | 77.6          | -            | -           | 76.5        | **82.6**      | **88.7**      | **81.9**      |
| ChartQA_test              | 84.8          | -            | -           | 83.0        | **87.3**      | **94.2**      | **87.2**      |
| TextVQA_val               | 79.1          | 80.1         | -           | 84.3        | **84.9**      | **91.2**      | **84.6**      |
| OCRBench                  | 822           | 852          | 785         | 845         | **864**       | **929.0**     | **861**       |
| CC_OCR                    | 57.7          | -            | -           | 61.6        | **77.8**      | **83.7**      | **77.3**      |
| MMStar                    | 62.8          | -            | -           | 60.7        | **63.9**      | **69.3**      | **63.6**      |
| MMBench-V1.1-En_test      | 79.4          | 78.0         | 76.0        | 80.7        | **82.6**      | **89.6**      | **82.4**      |
| MMT-Bench_test            | -             | -            | -           | 63.7        | **63.6**      | **69.0**      | **63.3**      |
| MMStar                    | **61.5**      | 57.5         | 54.8        | 60.7        | **63.9**      | **69.2**      | **63.6**      |
| MMVet_GPT-4-Turbo         | 54.2          | 60.0         | 66.9        | 62.0        | **67.1**      | **73.3**      | **67.2**      |
| HallBench_avg             | 45.2          | 48.1         | 46.1        | 50.6        | **52.9**      | **58.0**      | **52.5**      |
| MathVista_testmini        | 58.3          | 60.6         | 52.4        | 58.2        | **68.2**      | **74.0**      | **67.9**      |
| MathVision                | -             | -            | -           | 16.3        | **25.07**     | **27.7**      | **24.8**      |

---

### **Reasoning & Visual Understanding Benchmarks**  
| Benchmark                  | # Shots | Metric                   | Llama 3.2 11B | Llama 3.2 90B | **Sapnous-MoE (Updated)** | **Sapnous-6B** |
|----------------------------|---------|--------------------------|--------------|--------------|-----------------|--------------|
| VQAv2 (val)               | 0       | Accuracy                 | 66.8         | 73.6         | **80.3**     | **74.1**     |
| Text VQA (val)            | 0       | Relaxed accuracy         | 73.1         | 73.5         | **81.1**     | **74.7**     |
| DocVQA (val, unseen)      | 0       | ANLS                     | 62.3         | 70.7         | **77.2**     | **71.0**     |
| MMMU (val, 0-shot)        | 0       | Micro average accuracy   | 41.7         | 49.3         | **55.4**     | **49.2**     |
| ChartQA (test)            | 0       | Accuracy                 | 39.4         | 54.2         | **61.0**     | **54.1**     |
| InfographicsQA (val, unseen) | 0    | ANLS                     | 43.2         | 56.8         | **63.7**     | **57.1**     |
| AI2 Diagram (test)        | 0       | Accuracy                 | 62.4         | 75.3         | **82.3**     | **75.6**     |
| MMMU (val, CoT)          | 0       | Micro average accuracy   | 50.7         | 60.3         | **66.5**     | **60.6**     |
| MMMU-Pro, Standard (10 opts, test) | 0 | Accuracy               | 33.0         | 45.2         | **50.0**     | **45.5**     |
| MMMU-Pro, Vision (test)   | 0       | Accuracy                 | 23.7         | 33.8         | **39.6**     | **33.9**     |
| MathVista (testmini)      | 0       | Accuracy                 | 51.5         | 57.3         | **63.0**     | **57.5**     |
| ChartQA (test, CoT)       | 0       | Relaxed accuracy         | 83.4         | 85.5         | **93.3**     | **86.0**     |
| AI2 Diagram (test)        | 0       | Accuracy                 | 91.1         | 92.3         | **100.9**     | **93.5**     |
| DocVQA (test)            | 0       | ANLS                     | 88.4         | 90.1         | **98.9**     | **91.3**     |
| VQAv2 (test)             | 0       | Accuracy                 | 75.2         | 78.1         | **86.0**     | **79.0**     |
| MMLU (CoT)               | 0       | Macro_avg/acc            | 73.0         | 86.0         | **94.3**     | **87.0**     |
| MATH (CoT)               | 0       | Final_em                 | 51.9         | 68.0         | **75.2**     | **68.5**     |
| GPQA                     | 0       | Accuracy                 | 32.8         | 46.7         | **52.2**     | **46.7**     |
| MGSM (CoT)               | 0       | em                       | 68.9         | 86.9         | **95.0**     | **87.4**     |

---
The model is distributed across 5 safetensors files for efficient loading and memory management. Each file contains specific layers and weights as documented in the model.safetensors.index.json.

## Usage

```python
from transformers import pipeline
import requests
from PIL import Image
from io import BytesIO

def process_image_from_url(image_url, text_prompt):
    """Processes an image from a URL using a Transformers pipeline."""
    try:
        # Fetch the image from the URL
        response = requests.get(image_url, stream=True)
        response.raise_for_status()  # Raise an exception for bad status codes (4xx or 5xx)

        # Open the image using PIL
        image = Image.open(BytesIO(response.content))

        # Create the input for the pipeline
        inputs = {"image": image, "text": text_prompt}

        # Initialize the pipeline
        pipe = pipeline("image-text-to-text", model="Sapnous-AI/Sapnous-VR-6B", trust_remote_code=True)

        # Process the image and text
        result = pipe(inputs)
        return result

    except requests.exceptions.RequestException as e:
        print(f"Error fetching image: {e}")
        return None
    except Exception as e:
        print(f"An error occurred: {e}")
        return None

# Example usage
image_url = "example.com" #replace with your image url.
text_prompt = "What is in this image?"

result = process_image_from_url(image_url, text_prompt)

if result:
    print(result)

```

## Model Capabilities

- Multi-modal understanding and generation
- Enhanced visual perception with advanced vision encoder
- Efficient processing of long sequences
- Robust performance across various vision-language tasks

## Citations

```bibtex
@misc{sapnous-6b,
    title = {Sapnous-6B},
    author = {Sapnous AI Team},
    year = {2025}
}

@article{Sapnous6B,
    title={Sapnous-6B: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
    author={Sapnous AI Team},
    year={2025}
}

@article{Sapnous-VR,
    title={Sapnous-VR: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
    author={Sapnous AI Team},
    year={2025}
}
```

## License

Please refer to the LICENSE file for terms of use and distribution.