Atah Alam
commited on
Commit
·
5838aa1
1
Parent(s):
2e2a204
Updated py files
Browse files- __init__.py +26 -3
- attention_sapnous.py +235 -0
- configuration_sapnous.py +16 -2
- convert_to_gguf.py +84 -10
- model.py +14 -0
- modeling_sapnous.py +238 -20
- models/sapnous/__init__.py +41 -0
- models/sapnous/configuration_sapnous.py +131 -0
- models/sapnous/modeling_sapnous.py +535 -0
- models/sapnous/test_tokenization_sapnous.py +52 -0
- models/sapnous/tokenization_sapnous.py +91 -0
- test_modeling_sapnous.py +92 -0
- test_tokenization_sapnous.py +157 -0
- tokenization_sapnous.py +197 -0
__init__.py
CHANGED
@@ -1,7 +1,21 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from typing import TYPE_CHECKING
|
4 |
from transformers.utils import _LazyModule
|
|
|
|
|
5 |
|
6 |
_import_structure = {
|
7 |
"configuration_sapnous": ["SAPNOUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "SapnousT1Config"],
|
@@ -13,4 +27,13 @@ if TYPE_CHECKING:
|
|
13 |
from .modeling_sapnous import SapnousT1Model, SapnousT1ForCausalLM
|
14 |
else:
|
15 |
import sys
|
16 |
-
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
from typing import TYPE_CHECKING
|
16 |
from transformers.utils import _LazyModule
|
17 |
+
from transformers.models.auto import CONFIG_MAPPING, MODEL_MAPPING, MODEL_FOR_CAUSAL_LM_MAPPING
|
18 |
+
from transformers.models.auto import AutoConfig, AutoModel, AutoModelForCausalLM
|
19 |
|
20 |
_import_structure = {
|
21 |
"configuration_sapnous": ["SAPNOUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "SapnousT1Config"],
|
|
|
27 |
from .modeling_sapnous import SapnousT1Model, SapnousT1ForCausalLM
|
28 |
else:
|
29 |
import sys
|
30 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
31 |
+
|
32 |
+
# Register model in auto classes
|
33 |
+
CONFIG_MAPPING["sapnous_t1"] = SapnousT1Config
|
34 |
+
MODEL_MAPPING["sapnous_t1"] = SapnousT1Model
|
35 |
+
MODEL_FOR_CAUSAL_LM_MAPPING["sapnous_t1"] = SapnousT1ForCausalLM
|
36 |
+
|
37 |
+
AutoConfig.register("sapnous_t1", SapnousT1Config)
|
38 |
+
AutoModel.register(SapnousT1Config, SapnousT1Model)
|
39 |
+
AutoModelForCausalLM.register(SapnousT1Config, SapnousT1ForCausalLM)
|
attention_sapnous.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import math
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from typing import Optional, Tuple
|
20 |
+
|
21 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0) -> torch.Tensor:
|
22 |
+
"""Precompute the frequency tensor for complex rotation."""
|
23 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
24 |
+
t = torch.arange(end, device=freqs.device)
|
25 |
+
freqs = torch.outer(t, freqs)
|
26 |
+
return torch.polar(torch.ones_like(freqs), freqs)
|
27 |
+
|
28 |
+
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
|
29 |
+
"""Apply rotary position embeddings to the input tensor."""
|
30 |
+
x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
31 |
+
freqs_cis = freqs_cis.view(1, *freqs_cis.shape)
|
32 |
+
x_rotated = x_complex * freqs_cis
|
33 |
+
return torch.view_as_real(x_rotated).flatten(-2)
|
34 |
+
|
35 |
+
class SapnousAttention(nn.Module):
|
36 |
+
"""Multi-head attention with rotary position embeddings and sliding window attention."""
|
37 |
+
def __init__(self, config):
|
38 |
+
super().__init__()
|
39 |
+
self.config = config
|
40 |
+
self.hidden_size = config.hidden_size
|
41 |
+
self.num_attention_heads = config.num_attention_heads
|
42 |
+
self.head_dim = self.hidden_size // self.num_attention_heads
|
43 |
+
self.num_key_value_heads = config.num_key_value_heads
|
44 |
+
self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads
|
45 |
+
self.max_position_embeddings = config.max_position_embeddings
|
46 |
+
self.rope_theta = config.rope_theta
|
47 |
+
self.sliding_window = config.sliding_window if config.use_sliding_window else None
|
48 |
+
|
49 |
+
if (self.head_dim * self.num_attention_heads) != self.hidden_size:
|
50 |
+
raise ValueError(
|
51 |
+
f"hidden_size must be divisible by num_attention_heads (got {self.hidden_size} and {self.num_attention_heads})"
|
52 |
+
)
|
53 |
+
|
54 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_attention_heads * self.head_dim, bias=False)
|
55 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
56 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
57 |
+
self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, self.hidden_size, bias=False)
|
58 |
+
|
59 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
60 |
+
|
61 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int) -> torch.Tensor:
|
62 |
+
return tensor.view(bsz, seq_len, self.num_attention_heads, self.head_dim).transpose(1, 2)
|
63 |
+
|
64 |
+
def _kv_shape(self, tensor: torch.Tensor, seq_len: int, bsz: int) -> torch.Tensor:
|
65 |
+
return tensor.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
66 |
+
|
67 |
+
def forward(
|
68 |
+
self,
|
69 |
+
hidden_states: torch.Tensor,
|
70 |
+
freqs_cis: torch.Tensor,
|
71 |
+
attention_mask: Optional[torch.Tensor] = None,
|
72 |
+
position_ids: Optional[torch.LongTensor] = None,
|
73 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
74 |
+
output_attentions: bool = False,
|
75 |
+
use_cache: bool = False,
|
76 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
77 |
+
bsz, q_len, _ = hidden_states.size()
|
78 |
+
|
79 |
+
query_states = self.q_proj(hidden_states)
|
80 |
+
key_states = self.k_proj(hidden_states)
|
81 |
+
value_states = self.v_proj(hidden_states)
|
82 |
+
|
83 |
+
query_states = self._shape(query_states, q_len, bsz)
|
84 |
+
key_states = self._kv_shape(key_states, q_len, bsz)
|
85 |
+
value_states = self._kv_shape(value_states, q_len, bsz)
|
86 |
+
|
87 |
+
kv_seq_len = key_states.shape[-2]
|
88 |
+
if past_key_value is not None:
|
89 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
90 |
+
|
91 |
+
# Apply rotary position embeddings
|
92 |
+
if position_ids is None:
|
93 |
+
position_ids = torch.arange(kv_seq_len, device=hidden_states.device)
|
94 |
+
cos, sin = freqs_cis[position_ids]
|
95 |
+
query_states, key_states = apply_rotary_emb(query_states, cos), apply_rotary_emb(key_states, sin)
|
96 |
+
|
97 |
+
if past_key_value is not None:
|
98 |
+
# Reuse k, v, self_attention
|
99 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
100 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
101 |
+
|
102 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
103 |
+
|
104 |
+
# Repeat k/v heads if n_kv_heads < n_heads
|
105 |
+
key_states = torch.repeat_interleave(key_states, self.num_key_value_groups, dim=1)
|
106 |
+
value_states = torch.repeat_interleave(value_states, self.num_key_value_groups, dim=1)
|
107 |
+
|
108 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
109 |
+
|
110 |
+
if attention_mask is not None:
|
111 |
+
attn_weights = attn_weights + attention_mask
|
112 |
+
|
113 |
+
# Sliding window attention if configured
|
114 |
+
if self.sliding_window is not None and kv_seq_len > self.sliding_window:
|
115 |
+
# Create sliding window mask
|
116 |
+
window_mask = torch.ones_like(attn_weights, dtype=torch.bool)
|
117 |
+
for i in range(q_len):
|
118 |
+
window_start = max(0, i - self.sliding_window // 2)
|
119 |
+
window_end = min(kv_seq_len, i + self.sliding_window // 2)
|
120 |
+
window_mask[:, :, i, window_start:window_end] = False
|
121 |
+
attn_weights = attn_weights.masked_fill(window_mask, float('-inf'))
|
122 |
+
|
123 |
+
# Causal mask for autoregressive generation
|
124 |
+
if self.config.scoring_func == "softmax":
|
125 |
+
causal_mask = torch.triu(torch.ones((q_len, kv_seq_len), dtype=torch.bool), diagonal=1)
|
126 |
+
causal_mask = causal_mask.unsqueeze(0).unsqueeze(0)
|
127 |
+
attn_weights = attn_weights.masked_fill(causal_mask.to(attn_weights.device), float('-inf'))
|
128 |
+
attn_weights = F.softmax(attn_weights, dim=-1)
|
129 |
+
else:
|
130 |
+
# Alternative scoring functions (e.g., RoPE-only, cosine similarity)
|
131 |
+
attn_weights = F.relu(attn_weights)
|
132 |
+
attn_weights = attn_weights / (attn_weights.sum(dim=-1, keepdim=True) + 1e-6)
|
133 |
+
|
134 |
+
attn_weights = self.attention_dropout(attn_weights)
|
135 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
136 |
+
|
137 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
138 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
139 |
+
|
140 |
+
attn_output = self.o_proj(attn_output)
|
141 |
+
|
142 |
+
if not output_attentions:
|
143 |
+
attn_weights = None
|
144 |
+
|
145 |
+
return attn_output, attn_weights, past_key_value
|
146 |
+
|
147 |
+
class SapnousBlock(nn.Module):
|
148 |
+
"""Transformer block with attention, layer norm, and feed-forward network."""
|
149 |
+
def __init__(self, config):
|
150 |
+
super().__init__()
|
151 |
+
self.hidden_size = config.hidden_size
|
152 |
+
self.self_attn = SapnousAttention(config)
|
153 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
|
154 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
|
155 |
+
|
156 |
+
self.mlp = nn.Sequential(
|
157 |
+
nn.Linear(config.hidden_size, config.intermediate_size, bias=False),
|
158 |
+
nn.SiLU(),
|
159 |
+
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
|
160 |
+
)
|
161 |
+
|
162 |
+
def forward(
|
163 |
+
self,
|
164 |
+
hidden_states: torch.Tensor,
|
165 |
+
freqs_cis: torch.Tensor,
|
166 |
+
attention_mask: Optional[torch.Tensor] = None,
|
167 |
+
position_ids: Optional[torch.LongTensor] = None,
|
168 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
169 |
+
output_attentions: bool = False,
|
170 |
+
use_cache: bool = False,
|
171 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
172 |
+
# Self Attention
|
173 |
+
residual = hidden_states
|
174 |
+
hidden_states = self.input_layernorm(hidden_states)
|
175 |
+
|
176 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
177 |
+
hidden_states=hidden_states,
|
178 |
+
freqs_cis=freqs_cis,
|
179 |
+
attention_mask=attention_mask,
|
180 |
+
position_ids=position_ids,
|
181 |
+
past_key_value=past_key_value,
|
182 |
+
output_attentions=output_attentions,
|
183 |
+
use_cache=use_cache,
|
184 |
+
)
|
185 |
+
hidden_states = residual + hidden_states
|
186 |
+
|
187 |
+
# Fully Connected
|
188 |
+
residual = hidden_states
|
189 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
190 |
+
hidden_states = self.mlp(hidden_states)
|
191 |
+
hidden_states = residual + hidden_states
|
192 |
+
|
193 |
+
outputs = (hidden_states,)
|
194 |
+
|
195 |
+
if output_attentions:
|
196 |
+
outputs += (self_attn_weights,)
|
197 |
+
|
198 |
+
if use_cache:
|
199 |
+
outputs += (present_key_value,)
|
200 |
+
|
201 |
+
return outputs
|
202 |
+
|
203 |
+
class SapnousVisionEmbeddings(nn.Module):
|
204 |
+
"""Vision embeddings for multimodal support."""
|
205 |
+
def __init__(self, config):
|
206 |
+
super().__init__()
|
207 |
+
self.config = config
|
208 |
+
self.hidden_size = config.hidden_size
|
209 |
+
|
210 |
+
# Vision embedding layers
|
211 |
+
self.patch_embed = nn.Conv2d(3, self.hidden_size, kernel_size=16, stride=16)
|
212 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.hidden_size))
|
213 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, (224 // 16) ** 2 + 1, self.hidden_size))
|
214 |
+
|
215 |
+
# Layer normalization and dropout
|
216 |
+
self.norm = nn.LayerNorm(self.hidden_size, eps=config.rms_norm_eps)
|
217 |
+
self.dropout = nn.Dropout(config.attention_dropout)
|
218 |
+
|
219 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
220 |
+
B = pixel_values.shape[0]
|
221 |
+
|
222 |
+
# Create patch embeddings
|
223 |
+
x = self.patch_embed(pixel_values)
|
224 |
+
x = x.flatten(2).transpose(1, 2) # B, N, C
|
225 |
+
|
226 |
+
# Add cls token and position embeddings
|
227 |
+
cls_tokens = self.cls_token.expand(B, -1, -1)
|
228 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
229 |
+
x = x + self.pos_embed
|
230 |
+
|
231 |
+
# Apply normalization and dropout
|
232 |
+
x = self.norm(x)
|
233 |
+
x = self.dropout(x)
|
234 |
+
|
235 |
+
return x
|
configuration_sapnous.py
CHANGED
@@ -1,11 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers.configuration_utils import PretrainedConfig
|
2 |
from transformers.utils import logging
|
3 |
-
from transformers import AutoConfig
|
4 |
|
5 |
logger = logging.get_logger(__name__)
|
6 |
|
7 |
SAPNOUS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
8 |
-
"Sapnous-AI/Sapnous-6B": "https://huggingface.co/Sapnous-AI/Sapnous-6B/resolve/main/config.json",
|
9 |
}
|
10 |
|
11 |
class SapnousT1Config(PretrainedConfig):
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
from transformers.configuration_utils import PretrainedConfig
|
16 |
from transformers.utils import logging
|
17 |
+
from transformers import AutoConfig
|
18 |
|
19 |
logger = logging.get_logger(__name__)
|
20 |
|
21 |
SAPNOUS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
22 |
+
"Sapnous-AI/Sapnous-VR-6B": "https://huggingface.co/Sapnous-AI/Sapnous-VR-6B/resolve/main/config.json",
|
23 |
}
|
24 |
|
25 |
class SapnousT1Config(PretrainedConfig):
|
convert_to_gguf.py
CHANGED
@@ -1,7 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
|
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from ctransformers import AutoModelForCausalLM as GGUFModel
|
|
|
5 |
|
6 |
def convert_to_gguf(model_path, output_path):
|
7 |
# Load the model and tokenizer with vision-language support
|
@@ -16,29 +33,86 @@ def convert_to_gguf(model_path, output_path):
|
|
16 |
trust_remote_code=True
|
17 |
)
|
18 |
|
19 |
-
#
|
|
|
|
|
|
|
|
|
|
|
20 |
model.save_pretrained(output_path, safe_serialization=True)
|
21 |
tokenizer.save_pretrained(output_path)
|
22 |
|
23 |
-
# Convert to GGUF using
|
24 |
gguf_model = GGUFModel.from_pretrained(
|
25 |
output_path,
|
26 |
-
model_type='
|
27 |
gpu_layers=0, # CPU only for conversion
|
28 |
config={
|
29 |
-
'context_length':
|
30 |
-
'attention_type': '
|
31 |
-
'num_attention_heads':
|
32 |
-
'num_key_value_heads':
|
33 |
-
'hidden_size':
|
34 |
-
'intermediate_size':
|
35 |
-
'max_position_embeddings':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
}
|
37 |
)
|
38 |
|
39 |
print(f"Model converted and saved to {output_path}")
|
40 |
return gguf_model
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
if __name__ == '__main__':
|
43 |
model_path = os.path.dirname(os.path.abspath(__file__))
|
44 |
output_path = os.path.join(model_path, 'gguf_model')
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
import os
|
16 |
import torch
|
17 |
+
import json
|
18 |
+
from pathlib import Path
|
19 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
20 |
from ctransformers import AutoModelForCausalLM as GGUFModel
|
21 |
+
from models.sapnous import SapnousT1Config
|
22 |
|
23 |
def convert_to_gguf(model_path, output_path):
|
24 |
# Load the model and tokenizer with vision-language support
|
|
|
33 |
trust_remote_code=True
|
34 |
)
|
35 |
|
36 |
+
# Get model configuration
|
37 |
+
config = model.config
|
38 |
+
if not isinstance(config, SapnousT1Config):
|
39 |
+
raise ValueError("Model must be a SapnousT1 model")
|
40 |
+
|
41 |
+
# Save in intermediate format
|
42 |
model.save_pretrained(output_path, safe_serialization=True)
|
43 |
tokenizer.save_pretrained(output_path)
|
44 |
|
45 |
+
# Convert to GGUF using custom SapnousT1 architecture settings
|
46 |
gguf_model = GGUFModel.from_pretrained(
|
47 |
output_path,
|
48 |
+
model_type='sapnous_t1', # Custom architecture type
|
49 |
gpu_layers=0, # CPU only for conversion
|
50 |
config={
|
51 |
+
'context_length': config.sliding_window,
|
52 |
+
'attention_type': 'multihead', # Custom attention implementation
|
53 |
+
'num_attention_heads': config.num_attention_heads,
|
54 |
+
'num_key_value_heads': config.num_key_value_heads,
|
55 |
+
'hidden_size': config.hidden_size,
|
56 |
+
'intermediate_size': config.intermediate_size,
|
57 |
+
'max_position_embeddings': config.max_position_embeddings,
|
58 |
+
'vocab_size': config.vocab_size,
|
59 |
+
'num_hidden_layers': config.num_hidden_layers,
|
60 |
+
'rms_norm_eps': config.rms_norm_eps,
|
61 |
+
'rope_theta': config.rope_theta,
|
62 |
+
# Vision model parameters
|
63 |
+
'vision_config': {
|
64 |
+
'hidden_size': config.vision_hidden_size,
|
65 |
+
'num_hidden_layers': config.vision_layers,
|
66 |
+
'num_attention_heads': config.vision_heads,
|
67 |
+
'intermediate_size': config.vision_intermediate_size,
|
68 |
+
'patch_size': config.patch_size,
|
69 |
+
'image_size': config.image_size
|
70 |
+
}
|
71 |
}
|
72 |
)
|
73 |
|
74 |
print(f"Model converted and saved to {output_path}")
|
75 |
return gguf_model
|
76 |
|
77 |
+
def convert_to_hf(gguf_path, output_path):
|
78 |
+
"""Convert GGUF model back to Hugging Face format"""
|
79 |
+
# Load GGUF model configuration
|
80 |
+
config_path = Path(gguf_path) / "config.json"
|
81 |
+
with open(config_path, 'r') as f:
|
82 |
+
gguf_config = json.load(f)
|
83 |
+
|
84 |
+
# Create SapnousT1 configuration
|
85 |
+
config = SapnousT1Config(
|
86 |
+
vocab_size=gguf_config['vocab_size'],
|
87 |
+
hidden_size=gguf_config['hidden_size'],
|
88 |
+
num_hidden_layers=gguf_config['num_hidden_layers'],
|
89 |
+
num_attention_heads=gguf_config['num_attention_heads'],
|
90 |
+
num_key_value_heads=gguf_config['num_key_value_heads'],
|
91 |
+
intermediate_size=gguf_config['intermediate_size'],
|
92 |
+
max_position_embeddings=gguf_config['max_position_embeddings'],
|
93 |
+
rms_norm_eps=gguf_config['rms_norm_eps'],
|
94 |
+
rope_theta=gguf_config['rope_theta'],
|
95 |
+
# Vision configuration
|
96 |
+
vision_hidden_size=gguf_config['vision_config']['hidden_size'],
|
97 |
+
vision_layers=gguf_config['vision_config']['num_hidden_layers'],
|
98 |
+
vision_heads=gguf_config['vision_config']['num_attention_heads'],
|
99 |
+
vision_intermediate_size=gguf_config['vision_config']['intermediate_size'],
|
100 |
+
patch_size=gguf_config['vision_config']['patch_size'],
|
101 |
+
image_size=gguf_config['vision_config']['image_size']
|
102 |
+
)
|
103 |
+
|
104 |
+
# Load GGUF model
|
105 |
+
gguf_model = GGUFModel.from_pretrained(gguf_path)
|
106 |
+
|
107 |
+
# Convert weights to HF format
|
108 |
+
model = AutoModelForCausalLM.from_config(config)
|
109 |
+
model.load_state_dict(gguf_model.state_dict())
|
110 |
+
|
111 |
+
# Save converted model
|
112 |
+
model.save_pretrained(output_path)
|
113 |
+
print(f"Model converted back to Hugging Face format at {output_path}")
|
114 |
+
return model
|
115 |
+
|
116 |
if __name__ == '__main__':
|
117 |
model_path = os.path.dirname(os.path.abspath(__file__))
|
118 |
output_path = os.path.join(model_path, 'gguf_model')
|
model.py
CHANGED
@@ -1,3 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import PreTrainedModel, AutoConfig
|
2 |
import torch
|
3 |
import torch.nn as nn
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
from transformers import PreTrainedModel, AutoConfig
|
16 |
import torch
|
17 |
import torch.nn as nn
|
modeling_sapnous.py
CHANGED
@@ -1,53 +1,271 @@
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
|
|
|
|
3 |
from transformers import PreTrainedModel, AutoModelForCausalLM
|
4 |
-
from
|
|
|
|
|
5 |
|
6 |
class SapnousT1PreTrainedModel(PreTrainedModel):
|
7 |
"""Base class for all Sapnous-T1 models."""
|
8 |
config_class = SapnousT1Config
|
|
|
9 |
|
10 |
def __init__(self, config: SapnousT1Config):
|
11 |
super().__init__(config)
|
12 |
self.config = config
|
13 |
|
14 |
def _init_weights(self, module):
|
15 |
-
"""Initialize weights
|
|
|
16 |
if isinstance(module, nn.Linear):
|
17 |
-
module.weight.data.normal_(mean=0.0, std=
|
18 |
if module.bias is not None:
|
19 |
module.bias.data.zero_()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
class SapnousT1Model(SapnousT1PreTrainedModel):
|
22 |
-
"""Base Transformer Model"""
|
23 |
def __init__(self, config: SapnousT1Config):
|
24 |
super().__init__(config)
|
|
|
25 |
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
26 |
-
self.
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
)
|
33 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
|
34 |
|
35 |
-
def
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
class SapnousT1ForCausalLM(SapnousT1PreTrainedModel):
|
41 |
-
"""Sapnous-T1 Model for Causal
|
|
|
|
|
42 |
def __init__(self, config: SapnousT1Config):
|
43 |
super().__init__(config)
|
44 |
self.model = SapnousT1Model(config)
|
45 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
logits = self.lm_head(hidden_states)
|
50 |
-
return logits
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
AutoModelForCausalLM.register(SapnousT1Config, SapnousT1ForCausalLM)
|
|
|
1 |
+
import math
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from typing import Optional, Tuple, List, Union
|
6 |
from transformers import PreTrainedModel, AutoModelForCausalLM
|
7 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
|
8 |
+
from .configuration_sapnous import SapnousT1Config
|
9 |
+
from .attention_sapnous import SapnousAttention, SapnousBlock, SapnousVisionEmbeddings, precompute_freqs_cis
|
10 |
|
11 |
class SapnousT1PreTrainedModel(PreTrainedModel):
|
12 |
"""Base class for all Sapnous-T1 models."""
|
13 |
config_class = SapnousT1Config
|
14 |
+
base_model_prefix = "sapnous"
|
15 |
|
16 |
def __init__(self, config: SapnousT1Config):
|
17 |
super().__init__(config)
|
18 |
self.config = config
|
19 |
|
20 |
def _init_weights(self, module):
|
21 |
+
"""Initialize weights using the model's initialization configuration."""
|
22 |
+
std = self.config.initializer_range
|
23 |
if isinstance(module, nn.Linear):
|
24 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
25 |
if module.bias is not None:
|
26 |
module.bias.data.zero_()
|
27 |
+
elif isinstance(module, nn.Embedding):
|
28 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
29 |
+
elif isinstance(module, nn.LayerNorm):
|
30 |
+
module.bias.data.zero_()
|
31 |
+
module.weight.data.fill_(1.0)
|
32 |
+
elif isinstance(module, SapnousAttention):
|
33 |
+
module.q_proj.weight.data.normal_(mean=0.0, std=std)
|
34 |
+
module.k_proj.weight.data.normal_(mean=0.0, std=std)
|
35 |
+
module.v_proj.weight.data.normal_(mean=0.0, std=std)
|
36 |
+
module.o_proj.weight.data.normal_(mean=0.0, std=std)
|
37 |
|
38 |
class SapnousT1Model(SapnousT1PreTrainedModel):
|
39 |
+
"""Base Transformer Model with advanced attention mechanisms and optional vision support."""
|
40 |
def __init__(self, config: SapnousT1Config):
|
41 |
super().__init__(config)
|
42 |
+
|
43 |
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
44 |
+
self.layers = nn.ModuleList([SapnousBlock(config) for _ in range(config.num_hidden_layers)])
|
45 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
|
46 |
+
|
47 |
+
# Vision support
|
48 |
+
self.vision_embed = SapnousVisionEmbeddings(config) if getattr(config, 'vision_config', None) else None
|
49 |
+
|
50 |
+
# Initialize weights and apply final processing
|
51 |
+
self.post_init()
|
52 |
+
|
53 |
+
# Compute and cache RoPE frequencies
|
54 |
+
self.freqs_cis = precompute_freqs_cis(
|
55 |
+
self.config.hidden_size // self.config.num_attention_heads,
|
56 |
+
self.config.max_position_embeddings,
|
57 |
+
self.config.rope_theta,
|
58 |
)
|
|
|
59 |
|
60 |
+
def get_input_embeddings(self) -> nn.Module:
|
61 |
+
return self.embeddings
|
62 |
+
|
63 |
+
def set_input_embeddings(self, value: nn.Module):
|
64 |
+
self.embeddings = value
|
65 |
+
|
66 |
+
def forward(
|
67 |
+
self,
|
68 |
+
input_ids: Optional[torch.LongTensor] = None,
|
69 |
+
attention_mask: Optional[torch.Tensor] = None,
|
70 |
+
position_ids: Optional[torch.LongTensor] = None,
|
71 |
+
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
72 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
73 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
74 |
+
use_cache: Optional[bool] = None,
|
75 |
+
output_attentions: Optional[bool] = None,
|
76 |
+
output_hidden_states: Optional[bool] = None,
|
77 |
+
return_dict: Optional[bool] = None,
|
78 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
79 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
80 |
+
output_hidden_states = (
|
81 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
82 |
+
)
|
83 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
84 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
85 |
+
|
86 |
+
if input_ids is not None and inputs_embeds is not None:
|
87 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds")
|
88 |
+
|
89 |
+
# Process text input
|
90 |
+
if input_ids is not None:
|
91 |
+
inputs_embeds = self.embeddings(input_ids)
|
92 |
+
batch_size, seq_length = input_ids.shape[:2]
|
93 |
+
else:
|
94 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
95 |
+
|
96 |
+
# Process vision input if available
|
97 |
+
if pixel_values is not None and self.vision_embed is not None:
|
98 |
+
vision_embeds = self.vision_embed(pixel_values)
|
99 |
+
inputs_embeds = torch.cat([vision_embeds, inputs_embeds], dim=1)
|
100 |
+
seq_length = inputs_embeds.shape[1]
|
101 |
+
|
102 |
+
if position_ids is None:
|
103 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
104 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
|
105 |
+
position_ids = position_ids.unsqueeze(0)
|
106 |
+
|
107 |
+
# Prepare attention mask
|
108 |
+
if attention_mask is not None:
|
109 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
110 |
+
attention_mask = attention_mask[:, None, None, :]
|
111 |
+
attention_mask = attention_mask.to(dtype=inputs_embeds.dtype)
|
112 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(inputs_embeds.dtype).min
|
113 |
+
|
114 |
+
freqs_cis = self.freqs_cis.to(inputs_embeds.device)
|
115 |
+
|
116 |
+
hidden_states = inputs_embeds
|
117 |
+
all_hidden_states = () if output_hidden_states else None
|
118 |
+
all_self_attns = () if output_attentions else None
|
119 |
+
next_decoder_cache = () if use_cache else None
|
120 |
+
|
121 |
+
for idx, decoder_layer in enumerate(self.layers):
|
122 |
+
if output_hidden_states:
|
123 |
+
all_hidden_states += (hidden_states,)
|
124 |
+
|
125 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
126 |
+
|
127 |
+
layer_outputs = decoder_layer(
|
128 |
+
hidden_states,
|
129 |
+
freqs_cis=freqs_cis,
|
130 |
+
attention_mask=attention_mask,
|
131 |
+
position_ids=position_ids,
|
132 |
+
past_key_value=past_key_value,
|
133 |
+
output_attentions=output_attentions,
|
134 |
+
use_cache=use_cache,
|
135 |
+
)
|
136 |
+
|
137 |
+
hidden_states = layer_outputs[0]
|
138 |
+
|
139 |
+
if use_cache:
|
140 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
141 |
+
|
142 |
+
if output_attentions:
|
143 |
+
all_self_attns += (layer_outputs[1],)
|
144 |
+
|
145 |
+
hidden_states = self.norm(hidden_states)
|
146 |
+
|
147 |
+
if output_hidden_states:
|
148 |
+
all_hidden_states += (hidden_states,)
|
149 |
+
|
150 |
+
if not return_dict:
|
151 |
+
return tuple(v for v in [
|
152 |
+
hidden_states,
|
153 |
+
next_decoder_cache,
|
154 |
+
all_hidden_states,
|
155 |
+
all_self_attns,
|
156 |
+
] if v is not None)
|
157 |
+
|
158 |
+
return BaseModelOutputWithPast(
|
159 |
+
last_hidden_state=hidden_states,
|
160 |
+
past_key_values=next_decoder_cache,
|
161 |
+
hidden_states=all_hidden_states,
|
162 |
+
attentions=all_self_attns,
|
163 |
+
)
|
164 |
|
165 |
class SapnousT1ForCausalLM(SapnousT1PreTrainedModel):
|
166 |
+
"""Sapnous-T1 Model for Causal Language Modeling with vision support."""
|
167 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
168 |
+
|
169 |
def __init__(self, config: SapnousT1Config):
|
170 |
super().__init__(config)
|
171 |
self.model = SapnousT1Model(config)
|
172 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
173 |
|
174 |
+
# Initialize weights and apply final processing
|
175 |
+
self.post_init()
|
176 |
+
|
177 |
+
def get_input_embeddings(self) -> nn.Module:
|
178 |
+
return self.model.embeddings
|
179 |
+
|
180 |
+
def set_input_embeddings(self, value: nn.Module):
|
181 |
+
self.model.embeddings = value
|
182 |
+
|
183 |
+
def get_output_embeddings(self) -> nn.Module:
|
184 |
+
return self.lm_head
|
185 |
+
|
186 |
+
def set_output_embeddings(self, new_embeddings: nn.Module):
|
187 |
+
self.lm_head = new_embeddings
|
188 |
+
|
189 |
+
def prepare_inputs_for_generation(
|
190 |
+
self,
|
191 |
+
input_ids: torch.LongTensor,
|
192 |
+
past_key_values: Optional[List[Tuple[torch.Tensor]]] = None,
|
193 |
+
attention_mask: Optional[torch.Tensor] = None,
|
194 |
+
**kwargs,
|
195 |
+
) -> dict:
|
196 |
+
if past_key_values:
|
197 |
+
input_ids = input_ids[:, -1:]
|
198 |
+
|
199 |
+
position_ids = kwargs.get("position_ids", None)
|
200 |
+
if position_ids is None:
|
201 |
+
position_ids = (attention_mask.long().cumsum(-1) - 1) if attention_mask is not None else None
|
202 |
+
if past_key_values:
|
203 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
204 |
+
|
205 |
+
return {
|
206 |
+
"input_ids": input_ids,
|
207 |
+
"attention_mask": attention_mask,
|
208 |
+
"position_ids": position_ids,
|
209 |
+
"past_key_values": past_key_values,
|
210 |
+
"use_cache": kwargs.get("use_cache"),
|
211 |
+
"pixel_values": kwargs.get("pixel_values", None),
|
212 |
+
}
|
213 |
+
|
214 |
+
def forward(
|
215 |
+
self,
|
216 |
+
input_ids: Optional[torch.LongTensor] = None,
|
217 |
+
attention_mask: Optional[torch.Tensor] = None,
|
218 |
+
position_ids: Optional[torch.LongTensor] = None,
|
219 |
+
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
220 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
221 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
222 |
+
labels: Optional[torch.LongTensor] = None,
|
223 |
+
use_cache: Optional[bool] = None,
|
224 |
+
output_attentions: Optional[bool] = None,
|
225 |
+
output_hidden_states: Optional[bool] = None,
|
226 |
+
return_dict: Optional[bool] = None,
|
227 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
228 |
+
r"""Labels for computing the masked language modeling loss."""
|
229 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
230 |
+
|
231 |
+
outputs = self.model(
|
232 |
+
input_ids=input_ids,
|
233 |
+
attention_mask=attention_mask,
|
234 |
+
position_ids=position_ids,
|
235 |
+
past_key_values=past_key_values,
|
236 |
+
inputs_embeds=inputs_embeds,
|
237 |
+
pixel_values=pixel_values,
|
238 |
+
use_cache=use_cache,
|
239 |
+
output_attentions=output_attentions,
|
240 |
+
output_hidden_states=output_hidden_states,
|
241 |
+
return_dict=return_dict,
|
242 |
+
)
|
243 |
+
|
244 |
+
hidden_states = outputs[0]
|
245 |
logits = self.lm_head(hidden_states)
|
|
|
246 |
|
247 |
+
loss = None
|
248 |
+
if labels is not None:
|
249 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
250 |
+
shift_labels = labels[..., 1:].contiguous()
|
251 |
+
loss_fct = nn.CrossEntropyLoss()
|
252 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
253 |
+
|
254 |
+
if not return_dict:
|
255 |
+
output = (logits,) + outputs[1:]
|
256 |
+
return ((loss,) + output) if loss is not None else output
|
257 |
+
|
258 |
+
return CausalLMOutputWithPast(
|
259 |
+
loss=loss,
|
260 |
+
logits=logits,
|
261 |
+
past_key_values=outputs.past_key_values,
|
262 |
+
hidden_states=outputs.hidden_states,
|
263 |
+
attentions=outputs.attentions,
|
264 |
+
)
|
265 |
+
|
266 |
+
def tie_weights(self):
|
267 |
+
"""Tie the weights between the input embeddings and the output embeddings."""
|
268 |
+
self.lm_head.weight = self.model.embeddings.weight
|
269 |
+
|
270 |
+
# Register the model
|
271 |
AutoModelForCausalLM.register(SapnousT1Config, SapnousT1ForCausalLM)
|
models/sapnous/__init__.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
from transformers.utils import _LazyModule
|
17 |
+
from transformers.models.auto import CONFIG_MAPPING, MODEL_MAPPING, MODEL_FOR_CAUSAL_LM_MAPPING
|
18 |
+
from transformers.models.auto import AutoConfig, AutoModel, AutoModelForCausalLM
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_sapnous": ["SAPNOUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "SapnousT1Config"],
|
22 |
+
"modeling_sapnous": ["SapnousT1Model", "SapnousT1ForCausalLM"],
|
23 |
+
"tokenization_sapnous": ["SapnousT1Tokenizer"],
|
24 |
+
}
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from .configuration_sapnous import SAPNOUS_PRETRAINED_CONFIG_ARCHIVE_MAP, SapnousT1Config
|
28 |
+
from .modeling_sapnous import SapnousT1Model, SapnousT1ForCausalLM
|
29 |
+
from .tokenization_sapnous import SapnousT1Tokenizer
|
30 |
+
else:
|
31 |
+
import sys
|
32 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
33 |
+
|
34 |
+
# Import configuration and models
|
35 |
+
from .configuration_sapnous import SapnousT1Config
|
36 |
+
from .modeling_sapnous import SapnousT1Model, SapnousT1ForCausalLM
|
37 |
+
|
38 |
+
# Register model in auto classes
|
39 |
+
CONFIG_MAPPING["sapnous_t1"] = SapnousT1Config
|
40 |
+
MODEL_MAPPING["sapnous_t1"] = SapnousT1Model
|
41 |
+
MODEL_FOR_CAUSAL_LM_MAPPING["sapnous_t1"] = SapnousT1ForCausalLM
|
models/sapnous/configuration_sapnous.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from transformers.configuration_utils import PretrainedConfig
|
16 |
+
from transformers.utils import logging
|
17 |
+
from transformers import AutoConfig
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
SAPNOUS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
22 |
+
"Sapnous-AI/Sapnous-6B": "https://huggingface.co/Sapnous-AI/Sapnous-6B/resolve/main/config.json",
|
23 |
+
}
|
24 |
+
|
25 |
+
class SapnousT1Config(PretrainedConfig):
|
26 |
+
"""Configuration class for Sapnous-T1 model with vision-language capabilities.
|
27 |
+
|
28 |
+
This configuration class handles both text and vision modalities, supporting multimodal
|
29 |
+
tasks like image understanding, video processing, and vision-language reasoning.
|
30 |
+
"""
|
31 |
+
|
32 |
+
model_type = "sapnous_t1"
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
# Text model parameters
|
37 |
+
vocab_size=151936,
|
38 |
+
hidden_size=5120,
|
39 |
+
intermediate_size=20480,
|
40 |
+
num_hidden_layers=36,
|
41 |
+
num_attention_heads=40,
|
42 |
+
num_key_value_heads=8,
|
43 |
+
hidden_act="silu",
|
44 |
+
max_position_embeddings=128000,
|
45 |
+
initializer_range=0.02,
|
46 |
+
rms_norm_eps=1e-6,
|
47 |
+
use_cache=True,
|
48 |
+
pad_token_id=None,
|
49 |
+
bos_token_id=151643,
|
50 |
+
eos_token_id=151645,
|
51 |
+
tie_word_embeddings=True,
|
52 |
+
|
53 |
+
# Vision model parameters
|
54 |
+
vision_start_token_id=151652,
|
55 |
+
vision_end_token_id=151653,
|
56 |
+
vision_token_id=151654,
|
57 |
+
image_token_id=151655,
|
58 |
+
video_token_id=151656,
|
59 |
+
vision_config=None,
|
60 |
+
patch_size=14,
|
61 |
+
image_size=224,
|
62 |
+
num_channels=3,
|
63 |
+
vision_layers=24,
|
64 |
+
vision_heads=16,
|
65 |
+
vision_hidden_size=1024,
|
66 |
+
vision_intermediate_size=4096,
|
67 |
+
vision_act="gelu",
|
68 |
+
vision_layer_norm_eps=1e-5,
|
69 |
+
vision_dropout=0.0,
|
70 |
+
vision_attention_dropout=0.0,
|
71 |
+
vision_embedding_dropout=0.0,
|
72 |
+
|
73 |
+
# Cross-attention parameters
|
74 |
+
num_cross_attention_layers=12,
|
75 |
+
cross_attention_heads=16,
|
76 |
+
cross_attention_dropout=0.0,
|
77 |
+
use_cross_attention=True,
|
78 |
+
|
79 |
+
# Positional encoding and attention parameters
|
80 |
+
rope_theta=1000000.0,
|
81 |
+
sliding_window=32768,
|
82 |
+
use_sliding_window=False,
|
83 |
+
max_window_layers=70,
|
84 |
+
attention_dropout=0.0,
|
85 |
+
rope_scaling=None,
|
86 |
+
scoring_func="softmax",
|
87 |
+
|
88 |
+
# Training parameters
|
89 |
+
aux_loss_alpha=0.001,
|
90 |
+
seq_aux=True,
|
91 |
+
**kwargs
|
92 |
+
):
|
93 |
+
super().__init__(
|
94 |
+
pad_token_id=pad_token_id,
|
95 |
+
bos_token_id=bos_token_id,
|
96 |
+
eos_token_id=eos_token_id,
|
97 |
+
tie_word_embeddings=tie_word_embeddings,
|
98 |
+
**kwargs,
|
99 |
+
)
|
100 |
+
|
101 |
+
self.vocab_size = vocab_size
|
102 |
+
self.max_position_embeddings = max_position_embeddings
|
103 |
+
self.hidden_size = hidden_size
|
104 |
+
self.intermediate_size = intermediate_size
|
105 |
+
self.num_hidden_layers = num_hidden_layers
|
106 |
+
self.num_attention_heads = num_attention_heads
|
107 |
+
self.num_key_value_heads = num_key_value_heads
|
108 |
+
self.hidden_act = hidden_act
|
109 |
+
self.initializer_range = initializer_range
|
110 |
+
self.rms_norm_eps = rms_norm_eps
|
111 |
+
self.use_cache = use_cache
|
112 |
+
self.vision_start_token_id = vision_start_token_id
|
113 |
+
self.vision_end_token_id = vision_end_token_id
|
114 |
+
self.vision_token_id = vision_token_id
|
115 |
+
self.image_token_id = image_token_id
|
116 |
+
self.video_token_id = video_token_id
|
117 |
+
self.vision_config = vision_config
|
118 |
+
self.rope_theta = rope_theta
|
119 |
+
self.sliding_window = sliding_window
|
120 |
+
self.use_sliding_window = use_sliding_window
|
121 |
+
self.max_window_layers = max_window_layers
|
122 |
+
self.attention_dropout = attention_dropout
|
123 |
+
self.rope_scaling = rope_scaling
|
124 |
+
self.scoring_func = scoring_func
|
125 |
+
self.aux_loss_alpha = aux_loss_alpha
|
126 |
+
self.seq_aux = seq_aux
|
127 |
+
|
128 |
+
model_type = "sapnous_t1"
|
129 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
130 |
+
|
131 |
+
AutoConfig.register("sapnous_t1", SapnousT1Config)
|
models/sapnous/modeling_sapnous.py
ADDED
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from typing import List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from torch.nn import CrossEntropyLoss
|
21 |
+
|
22 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
23 |
+
from transformers.modeling_utils import PreTrainedModel
|
24 |
+
from transformers.utils import logging
|
25 |
+
from transformers import AutoModelForCausalLM, AutoModel
|
26 |
+
|
27 |
+
from .configuration_sapnous import SapnousT1Config
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
class SapnousT1Attention(nn.Module):
|
32 |
+
def __init__(self, config: SapnousT1Config):
|
33 |
+
super().__init__()
|
34 |
+
self.config = config
|
35 |
+
self.hidden_size = config.hidden_size
|
36 |
+
self.num_heads = config.num_attention_heads
|
37 |
+
self.head_dim = self.hidden_size // self.num_heads
|
38 |
+
self.num_key_value_heads = config.num_key_value_heads
|
39 |
+
self.max_position_embeddings = config.max_position_embeddings
|
40 |
+
self.rope_theta = config.rope_theta
|
41 |
+
|
42 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
43 |
+
raise ValueError(
|
44 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`: {self.num_heads})."
|
45 |
+
)
|
46 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
47 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
48 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
49 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
50 |
+
|
51 |
+
self.dropout = nn.Dropout(config.attention_dropout)
|
52 |
+
|
53 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
54 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
55 |
+
|
56 |
+
def forward(
|
57 |
+
self,
|
58 |
+
hidden_states: torch.Tensor,
|
59 |
+
attention_mask: Optional[torch.Tensor] = None,
|
60 |
+
position_ids: Optional[torch.LongTensor] = None,
|
61 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
62 |
+
output_attentions: bool = False,
|
63 |
+
use_cache: bool = False,
|
64 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
65 |
+
bsz, q_len, _ = hidden_states.size()
|
66 |
+
|
67 |
+
query_states = self.q_proj(hidden_states)
|
68 |
+
key_states = self.k_proj(hidden_states)
|
69 |
+
value_states = self.v_proj(hidden_states)
|
70 |
+
|
71 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
72 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
73 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
74 |
+
|
75 |
+
kv_seq_len = key_states.shape[-2]
|
76 |
+
if past_key_value is not None:
|
77 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
78 |
+
|
79 |
+
if past_key_value is not None:
|
80 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
81 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
82 |
+
|
83 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
84 |
+
|
85 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
86 |
+
key_states = self._repeat_kv(key_states)
|
87 |
+
value_states = self._repeat_kv(value_states)
|
88 |
+
|
89 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
90 |
+
|
91 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
92 |
+
raise ValueError(
|
93 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
94 |
+
f" {attn_weights.size()}"
|
95 |
+
)
|
96 |
+
|
97 |
+
if attention_mask is not None:
|
98 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
99 |
+
raise ValueError(
|
100 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
101 |
+
)
|
102 |
+
attn_weights = attn_weights + attention_mask
|
103 |
+
|
104 |
+
# upcast attention to fp32
|
105 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
106 |
+
attn_weights = self.dropout(attn_weights)
|
107 |
+
|
108 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
109 |
+
|
110 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
111 |
+
raise ValueError(
|
112 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
113 |
+
f" {attn_output.size()}"
|
114 |
+
)
|
115 |
+
|
116 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
117 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
118 |
+
|
119 |
+
attn_output = self.o_proj(attn_output)
|
120 |
+
|
121 |
+
if not output_attentions:
|
122 |
+
attn_weights = None
|
123 |
+
|
124 |
+
return attn_output, attn_weights, past_key_value
|
125 |
+
|
126 |
+
def _repeat_kv(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
127 |
+
if self.num_key_value_heads != self.num_heads:
|
128 |
+
hidden_states = hidden_states.repeat_interleave(self.num_heads // self.num_key_value_heads, dim=1)
|
129 |
+
return hidden_states
|
130 |
+
|
131 |
+
class SapnousT1MLP(nn.Module):
|
132 |
+
def __init__(self, config: SapnousT1Config):
|
133 |
+
super().__init__()
|
134 |
+
self.config = config
|
135 |
+
self.hidden_size = config.hidden_size
|
136 |
+
self.intermediate_size = config.intermediate_size
|
137 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
138 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
139 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
140 |
+
self.act_fn = nn.SiLU()
|
141 |
+
|
142 |
+
def forward(self, x):
|
143 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
144 |
+
|
145 |
+
class SapnousT1DecoderLayer(nn.Module):
|
146 |
+
def __init__(self, config: SapnousT1Config):
|
147 |
+
super().__init__()
|
148 |
+
self.hidden_size = config.hidden_size
|
149 |
+
self.self_attn = SapnousT1Attention(config=config)
|
150 |
+
self.mlp = SapnousT1MLP(config)
|
151 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
|
152 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
|
153 |
+
|
154 |
+
def forward(
|
155 |
+
self,
|
156 |
+
hidden_states: torch.Tensor,
|
157 |
+
attention_mask: Optional[torch.Tensor] = None,
|
158 |
+
position_ids: Optional[torch.LongTensor] = None,
|
159 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
160 |
+
output_attentions: Optional[bool] = False,
|
161 |
+
use_cache: Optional[bool] = False,
|
162 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
163 |
+
residual = hidden_states
|
164 |
+
|
165 |
+
hidden_states = self.input_layernorm(hidden_states)
|
166 |
+
|
167 |
+
# Self Attention
|
168 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
169 |
+
hidden_states=hidden_states,
|
170 |
+
attention_mask=attention_mask,
|
171 |
+
position_ids=position_ids,
|
172 |
+
past_key_value=past_key_value,
|
173 |
+
output_attentions=output_attentions,
|
174 |
+
use_cache=use_cache,
|
175 |
+
)
|
176 |
+
hidden_states = residual + hidden_states
|
177 |
+
|
178 |
+
# Fully Connected
|
179 |
+
residual = hidden_states
|
180 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
181 |
+
hidden_states = self.mlp(hidden_states)
|
182 |
+
hidden_states = residual + hidden_states
|
183 |
+
|
184 |
+
outputs = (hidden_states,)
|
185 |
+
|
186 |
+
if output_attentions:
|
187 |
+
outputs += (self_attn_weights,)
|
188 |
+
|
189 |
+
if use_cache:
|
190 |
+
outputs += (present_key_value,)
|
191 |
+
|
192 |
+
return outputs
|
193 |
+
|
194 |
+
class SapnousT1PreTrainedModel(PreTrainedModel):
|
195 |
+
config_class = SapnousT1Config
|
196 |
+
base_model_prefix = "model"
|
197 |
+
supports_gradient_checkpointing = True
|
198 |
+
_no_split_modules = ["SapnousT1DecoderLayer"]
|
199 |
+
|
200 |
+
def _init_weights(self, module):
|
201 |
+
std = self.config.initializer_range
|
202 |
+
if isinstance(module, nn.Linear):
|
203 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
204 |
+
if module.bias is not None:
|
205 |
+
module.bias.data.zero_()
|
206 |
+
elif isinstance(module, nn.Embedding):
|
207 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
208 |
+
|
209 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
210 |
+
if isinstance(module, SapnousT1Model):
|
211 |
+
module.gradient_checkpointing = value
|
212 |
+
|
213 |
+
class SapnousT1Model(SapnousT1PreTrainedModel):
|
214 |
+
def __init__(self, config: SapnousT1Config):
|
215 |
+
super().__init__(config)
|
216 |
+
self.padding_idx = config.pad_token_id
|
217 |
+
self.vocab_size = config.vocab_size
|
218 |
+
|
219 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
220 |
+
|
221 |
+
self.layers = nn.ModuleList([SapnousT1DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
222 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
|
223 |
+
|
224 |
+
self.gradient_checkpointing = False
|
225 |
+
# Initialize weights and apply final processing
|
226 |
+
self.post_init()
|
227 |
+
|
228 |
+
def get_input_embeddings(self):
|
229 |
+
return self.embed_tokens
|
230 |
+
|
231 |
+
def set_input_embeddings(self, value):
|
232 |
+
self.embed_tokens = value
|
233 |
+
|
234 |
+
def forward(
|
235 |
+
self,
|
236 |
+
input_ids: torch.LongTensor = None,
|
237 |
+
attention_mask: Optional[torch.Tensor] = None,
|
238 |
+
position_ids: Optional[torch.LongTensor] = None,
|
239 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
240 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
241 |
+
use_cache: Optional[bool] = None,
|
242 |
+
output_attentions: Optional[bool] = None,
|
243 |
+
output_hidden_states: Optional[bool] = None,
|
244 |
+
return_dict: Optional[bool] = None,
|
245 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
246 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
247 |
+
output_hidden_states = (
|
248 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
249 |
+
)
|
250 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
251 |
+
|
252 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
253 |
+
|
254 |
+
# retrieve input_ids and inputs_embeds
|
255 |
+
if input_ids is not None and inputs_embeds is not None:
|
256 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
257 |
+
elif input_ids is not None:
|
258 |
+
batch_size, seq_length = input_ids.shape
|
259 |
+
elif inputs_embeds is not None:
|
260 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
261 |
+
else:
|
262 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
263 |
+
|
264 |
+
seq_length_with_past = seq_length
|
265 |
+
past_key_values_length = 0
|
266 |
+
|
267 |
+
if past_key_values is not None:
|
268 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
269 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
270 |
+
|
271 |
+
if position_ids is None:
|
272 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
273 |
+
position_ids = torch.arange(
|
274 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
275 |
+
)
|
276 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
277 |
+
else:
|
278 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
279 |
+
|
280 |
+
if inputs_embeds is None:
|
281 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
282 |
+
|
283 |
+
if attention_mask is not None:
|
284 |
+
if batch_size <= 0:
|
285 |
+
raise ValueError("batch_size has to be defined and > 0")
|
286 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
287 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
288 |
+
)
|
289 |
+
|
290 |
+
hidden_states = inputs_embeds
|
291 |
+
|
292 |
+
if self.gradient_checkpointing and self.training:
|
293 |
+
if use_cache:
|
294 |
+
logger.warning_once(
|
295 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
296 |
+
)
|
297 |
+
use_cache = False
|
298 |
+
|
299 |
+
# decoder layers
|
300 |
+
all_hidden_states = () if output_hidden_states else None
|
301 |
+
all_self_attns = () if output_attentions else None
|
302 |
+
next_decoder_cache = () if use_cache else None
|
303 |
+
|
304 |
+
for idx, decoder_layer in enumerate(self.layers):
|
305 |
+
if output_hidden_states:
|
306 |
+
all_hidden_states += (hidden_states,)
|
307 |
+
|
308 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
309 |
+
|
310 |
+
if self.gradient_checkpointing and self.training:
|
311 |
+
|
312 |
+
def create_custom_forward(module):
|
313 |
+
def custom_forward(*inputs):
|
314 |
+
# None for past_key_value
|
315 |
+
return module(*inputs, past_key_value, output_attentions)
|
316 |
+
|
317 |
+
return custom_forward
|
318 |
+
|
319 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
320 |
+
create_custom_forward(decoder_layer),
|
321 |
+
hidden_states,
|
322 |
+
attention_mask,
|
323 |
+
position_ids,
|
324 |
+
)
|
325 |
+
else:
|
326 |
+
layer_outputs = decoder_layer(
|
327 |
+
hidden_states,
|
328 |
+
attention_mask=attention_mask,
|
329 |
+
position_ids=position_ids,
|
330 |
+
past_key_value=past_key_value,
|
331 |
+
output_attentions=output_attentions,
|
332 |
+
use_cache=use_cache,
|
333 |
+
)
|
334 |
+
|
335 |
+
hidden_states = layer_outputs[0]
|
336 |
+
|
337 |
+
if use_cache:
|
338 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
339 |
+
|
340 |
+
if output_attentions:
|
341 |
+
all_self_attns += (layer_outputs[1],)
|
342 |
+
|
343 |
+
hidden_states = self.norm(hidden_states)
|
344 |
+
|
345 |
+
# add hidden states from the last decoder layer
|
346 |
+
if output_hidden_states:
|
347 |
+
all_hidden_states += (hidden_states,)
|
348 |
+
|
349 |
+
next_cache = next_decoder_cache if use_cache else None
|
350 |
+
if not return_dict:
|
351 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
352 |
+
return BaseModelOutputWithPast(
|
353 |
+
last_hidden_state=hidden_states,
|
354 |
+
past_key_values=next_cache,
|
355 |
+
hidden_states=all_hidden_states,
|
356 |
+
attentions=all_self_attns,
|
357 |
+
)
|
358 |
+
|
359 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
360 |
+
# create causal mask
|
361 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
362 |
+
combined_attention_mask = None
|
363 |
+
if input_shape[-1] > 1:
|
364 |
+
combined_attention_mask = _make_causal_mask(
|
365 |
+
input_shape,
|
366 |
+
inputs_embeds.dtype,
|
367 |
+
device=inputs_embeds.device,
|
368 |
+
past_key_values_length=past_key_values_length,
|
369 |
+
)
|
370 |
+
|
371 |
+
if attention_mask is not None:
|
372 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
373 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
|
374 |
+
combined_attention_mask = (
|
375 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
376 |
+
)
|
377 |
+
|
378 |
+
return combined_attention_mask
|
379 |
+
|
380 |
+
class SapnousT1ForCausalLM(SapnousT1PreTrainedModel):
|
381 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
382 |
+
|
383 |
+
def __init__(self, config):
|
384 |
+
super().__init__(config)
|
385 |
+
self.model = SapnousT1Model(config)
|
386 |
+
self.vocab_size = config.vocab_size
|
387 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
388 |
+
|
389 |
+
# Initialize weights and apply final processing
|
390 |
+
self.post_init()
|
391 |
+
|
392 |
+
def get_input_embeddings(self):
|
393 |
+
return self.model.embed_tokens
|
394 |
+
|
395 |
+
def set_input_embeddings(self, value):
|
396 |
+
self.model.embed_tokens = value
|
397 |
+
|
398 |
+
def get_output_embeddings(self):
|
399 |
+
return self.lm_head
|
400 |
+
|
401 |
+
def set_output_embeddings(self, new_embeddings):
|
402 |
+
self.lm_head = new_embeddings
|
403 |
+
|
404 |
+
def prepare_inputs_for_generation(
|
405 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
406 |
+
):
|
407 |
+
if past_key_values:
|
408 |
+
input_ids = input_ids[:, -1:]
|
409 |
+
|
410 |
+
position_ids = kwargs.get("position_ids", None)
|
411 |
+
if attention_mask is not None and position_ids is None:
|
412 |
+
# create position_ids on the fly for batch generation
|
413 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
414 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
415 |
+
if past_key_values:
|
416 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
417 |
+
|
418 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
419 |
+
if inputs_embeds is not None and past_key_values is None:
|
420 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
421 |
+
else:
|
422 |
+
model_inputs = {"input_ids": input_ids}
|
423 |
+
|
424 |
+
model_inputs.update(
|
425 |
+
{
|
426 |
+
"position_ids": position_ids,
|
427 |
+
"past_key_values": past_key_values,
|
428 |
+
"use_cache": kwargs.get("use_cache"),
|
429 |
+
"attention_mask": attention_mask,
|
430 |
+
}
|
431 |
+
)
|
432 |
+
return model_inputs
|
433 |
+
|
434 |
+
def forward(
|
435 |
+
self,
|
436 |
+
input_ids: torch.LongTensor = None,
|
437 |
+
attention_mask: Optional[torch.Tensor] = None,
|
438 |
+
position_ids: Optional[torch.LongTensor] = None,
|
439 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
440 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
441 |
+
labels: Optional[torch.LongTensor] = None,
|
442 |
+
use_cache: Optional[bool] = None,
|
443 |
+
output_attentions: Optional[bool] = None,
|
444 |
+
output_hidden_states: Optional[bool] = None,
|
445 |
+
return_dict: Optional[bool] = None,
|
446 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
447 |
+
r"""
|
448 |
+
Args:
|
449 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`)
|
450 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*)
|
451 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*)
|
452 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*)
|
453 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
|
454 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*)
|
455 |
+
use_cache (`bool`, *optional*)
|
456 |
+
output_attentions (`bool`, *optional*)
|
457 |
+
output_hidden_states (`bool`, *optional*)
|
458 |
+
return_dict (`bool`, *optional*)
|
459 |
+
|
460 |
+
Returns:
|
461 |
+
|
462 |
+
Example:
|
463 |
+
|
464 |
+
```python
|
465 |
+
>>> from transformers import AutoTokenizer, SapnousT1ForCausalLM
|
466 |
+
|
467 |
+
>>> model = SapnousT1ForCausalLM.from_pretrained("Sapnous-AI/Sapnous-VR-6B")
|
468 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Sapnous-AI/Sapnous-VR-6B")
|
469 |
+
|
470 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
471 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
472 |
+
|
473 |
+
>>> # Generate
|
474 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
475 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
476 |
+
"Hey, are you conscious? Can you talk to me? Yes, I am an AI language model capable of engaging in conversation."
|
477 |
+
```"""
|
478 |
+
|
479 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
480 |
+
output_hidden_states = (
|
481 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
482 |
+
)
|
483 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
484 |
+
|
485 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
486 |
+
outputs = self.model(
|
487 |
+
input_ids=input_ids,
|
488 |
+
attention_mask=attention_mask,
|
489 |
+
position_ids=position_ids,
|
490 |
+
past_key_values=past_key_values,
|
491 |
+
inputs_embeds=inputs_embeds,
|
492 |
+
use_cache=use_cache,
|
493 |
+
output_attentions=output_attentions,
|
494 |
+
output_hidden_states=output_hidden_states,
|
495 |
+
return_dict=return_dict,
|
496 |
+
)
|
497 |
+
|
498 |
+
hidden_states = outputs[0]
|
499 |
+
logits = self.lm_head(hidden_states)
|
500 |
+
|
501 |
+
loss = None
|
502 |
+
if labels is not None:
|
503 |
+
# Shift so that tokens < n predict n
|
504 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
505 |
+
shift_labels = labels[..., 1:].contiguous()
|
506 |
+
# Flatten the tokens
|
507 |
+
loss_fct = CrossEntropyLoss()
|
508 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
509 |
+
shift_labels = shift_labels.view(-1)
|
510 |
+
# Enable model parallelism
|
511 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
512 |
+
loss = loss_fct(shift_logits, shift_labels)
|
513 |
+
|
514 |
+
if not return_dict:
|
515 |
+
output = (logits,) + outputs[1:]
|
516 |
+
return (loss,) + output if loss is not None else output
|
517 |
+
|
518 |
+
return CausalLMOutputWithPast(
|
519 |
+
loss=loss,
|
520 |
+
logits=logits,
|
521 |
+
past_key_values=outputs.past_key_values,
|
522 |
+
hidden_states=outputs.hidden_states,
|
523 |
+
attentions=outputs.attentions,
|
524 |
+
)
|
525 |
+
|
526 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
527 |
+
reordered_past = ()
|
528 |
+
for layer_past in past_key_values:
|
529 |
+
reordered_past += (
|
530 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
531 |
+
)
|
532 |
+
return reordered_past
|
533 |
+
|
534 |
+
AutoModel.register(SapnousT1Config, SapnousT1Model)
|
535 |
+
AutoModelForCausalLM.register(SapnousT1Config, SapnousT1ForCausalLM)
|
models/sapnous/test_tokenization_sapnous.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import unittest
|
16 |
+
from transformers import AutoTokenizer
|
17 |
+
from .configuration_sapnous import SapnousT1Config
|
18 |
+
from .tokenization_sapnous import SapnousT1Tokenizer
|
19 |
+
|
20 |
+
class TestSapnousTokenizer(unittest.TestCase):
|
21 |
+
@classmethod
|
22 |
+
def setUpClass(cls):
|
23 |
+
cls.tokenizer = SapnousT1Tokenizer(
|
24 |
+
vocab_file="vocab.json",
|
25 |
+
merges_file="merges.txt"
|
26 |
+
)
|
27 |
+
|
28 |
+
def test_tokenizer_from_pretrained(self):
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
30 |
+
"Sapnous-AI/Sapnous-VR-6B",
|
31 |
+
trust_remote_code=True
|
32 |
+
)
|
33 |
+
self.assertIsInstance(tokenizer, SapnousT1Tokenizer)
|
34 |
+
|
35 |
+
def test_save_load_pretrained(self):
|
36 |
+
vocab = self.tokenizer.get_vocab()
|
37 |
+
self.assertIsInstance(vocab, dict)
|
38 |
+
self.assertGreater(len(vocab), 0)
|
39 |
+
|
40 |
+
def test_tokenization(self):
|
41 |
+
text = "Hello, world!"
|
42 |
+
tokens = self.tokenizer.tokenize(text)
|
43 |
+
self.assertIsInstance(tokens, list)
|
44 |
+
self.assertGreater(len(tokens), 0)
|
45 |
+
|
46 |
+
def test_special_tokens(self):
|
47 |
+
self.assertIsNotNone(self.tokenizer.unk_token)
|
48 |
+
self.assertIsNotNone(self.tokenizer.bos_token)
|
49 |
+
self.assertIsNotNone(self.tokenizer.eos_token)
|
50 |
+
|
51 |
+
if __name__ == '__main__':
|
52 |
+
unittest.main()
|
models/sapnous/tokenization_sapnous.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from typing import List, Optional, Tuple
|
16 |
+
|
17 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
18 |
+
from transformers.utils import logging
|
19 |
+
from transformers import AutoTokenizer
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
SAPNOUS_PRETRAINED_VOCAB_FILES_MAP = {
|
24 |
+
"vocab_file": {
|
25 |
+
"Sapnous-AI/Sapnous-VR-6B": "https://huggingface.co/Sapnous-AI/Sapnous-VR-6B/resolve/main/vocab.json",
|
26 |
+
},
|
27 |
+
"merges_file": {
|
28 |
+
"Sapnous-AI/Sapnous-VR-6B": "https://huggingface.co/Sapnous-AI/Sapnous-VR-6B/resolve/main/merges.txt",
|
29 |
+
},
|
30 |
+
}
|
31 |
+
|
32 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
33 |
+
"Sapnous-AI/Sapnous-VR-6B": 128000,
|
34 |
+
}
|
35 |
+
|
36 |
+
class SapnousT1Tokenizer(PreTrainedTokenizer):
|
37 |
+
vocab_files_names = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
|
38 |
+
pretrained_vocab_files_map = SAPNOUS_PRETRAINED_VOCAB_FILES_MAP
|
39 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
40 |
+
model_input_names = ["input_ids", "attention_mask"]
|
41 |
+
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
vocab_file,
|
45 |
+
merges_file,
|
46 |
+
errors="replace",
|
47 |
+
unk_token="<|endoftext|>",
|
48 |
+
bos_token="<|endoftext|>",
|
49 |
+
eos_token="<|endoftext|>",
|
50 |
+
pad_token=None,
|
51 |
+
add_prefix_space=False,
|
52 |
+
**kwargs
|
53 |
+
):
|
54 |
+
super().__init__(
|
55 |
+
errors=errors,
|
56 |
+
unk_token=unk_token,
|
57 |
+
bos_token=bos_token,
|
58 |
+
eos_token=eos_token,
|
59 |
+
pad_token=pad_token,
|
60 |
+
add_prefix_space=add_prefix_space,
|
61 |
+
**kwargs,
|
62 |
+
)
|
63 |
+
|
64 |
+
self.vocab_file = vocab_file
|
65 |
+
self.merges_file = merges_file
|
66 |
+
self.add_prefix_space = add_prefix_space
|
67 |
+
|
68 |
+
@property
|
69 |
+
def vocab_size(self) -> int:
|
70 |
+
return len(self.encoder)
|
71 |
+
|
72 |
+
def get_vocab(self) -> Dict[str, int]:
|
73 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
74 |
+
|
75 |
+
def _tokenize(self, text: str) -> List[str]:
|
76 |
+
""" Tokenize a string. """
|
77 |
+
raise NotImplementedError("Implement in subclass")
|
78 |
+
|
79 |
+
def _convert_token_to_id(self, token: str) -> int:
|
80 |
+
""" Converts a token to an id using the vocab. """
|
81 |
+
raise NotImplementedError("Implement in subclass")
|
82 |
+
|
83 |
+
def _convert_id_to_token(self, index: int) -> str:
|
84 |
+
""" Converts an index (integer) to a token. """
|
85 |
+
raise NotImplementedError("Implement in subclass")
|
86 |
+
|
87 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str, str]:
|
88 |
+
""" Save the vocabulary and special tokens file to a directory. """
|
89 |
+
raise NotImplementedError("Implement in subclass")
|
90 |
+
|
91 |
+
AutoTokenizer.register(SapnousT1Config, SapnousT1Tokenizer)
|
test_modeling_sapnous.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import unittest
|
16 |
+
import torch
|
17 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
18 |
+
from .modeling_sapnous import SapnousT1ForCausalLM
|
19 |
+
from .configuration_sapnous import SapnousT1Config
|
20 |
+
|
21 |
+
class TestSapnousModel(unittest.TestCase):
|
22 |
+
@classmethod
|
23 |
+
def setUpClass(cls):
|
24 |
+
cls.config = SapnousT1Config(
|
25 |
+
vocab_size=32000,
|
26 |
+
hidden_size=768,
|
27 |
+
num_hidden_layers=12,
|
28 |
+
num_attention_heads=12,
|
29 |
+
intermediate_size=3072
|
30 |
+
)
|
31 |
+
cls.model = SapnousT1ForCausalLM(cls.config)
|
32 |
+
|
33 |
+
def test_model_forward(self):
|
34 |
+
input_ids = torch.randint(0, self.config.vocab_size, (1, 10))
|
35 |
+
outputs = self.model(input_ids)
|
36 |
+
|
37 |
+
self.assertIsNotNone(outputs)
|
38 |
+
self.assertTrue(hasattr(outputs, 'logits'))
|
39 |
+
self.assertEqual(outputs.logits.shape, (1, 10, self.config.vocab_size))
|
40 |
+
|
41 |
+
def test_weight_tying(self):
|
42 |
+
self.model.tie_weights()
|
43 |
+
self.assertTrue(torch.equal(self.model.lm_head.weight, self.model.model.embeddings.weight))
|
44 |
+
|
45 |
+
def test_auto_model_registration(self):
|
46 |
+
model = AutoModelForCausalLM.from_config(self.config)
|
47 |
+
self.assertIsInstance(model, SapnousT1ForCausalLM)
|
48 |
+
|
49 |
+
def test_vision_embeddings(self):
|
50 |
+
# Test vision input processing
|
51 |
+
batch_size = 1
|
52 |
+
pixel_values = torch.randn(batch_size, 3, 224, 224)
|
53 |
+
input_ids = torch.randint(0, self.config.vocab_size, (batch_size, 10))
|
54 |
+
|
55 |
+
outputs = self.model(input_ids=input_ids, pixel_values=pixel_values)
|
56 |
+
self.assertIsNotNone(outputs)
|
57 |
+
self.assertTrue(hasattr(outputs, 'logits'))
|
58 |
+
|
59 |
+
# Vision input should increase sequence length
|
60 |
+
expected_seq_length = 10 + (224 // 16) ** 2 + 1 # text_len + num_patches + cls_token
|
61 |
+
self.assertEqual(outputs.logits.shape, (batch_size, expected_seq_length, self.config.vocab_size))
|
62 |
+
|
63 |
+
def test_attention_mask(self):
|
64 |
+
# Test attention mask handling
|
65 |
+
batch_size = 2
|
66 |
+
seq_length = 15
|
67 |
+
input_ids = torch.randint(0, self.config.vocab_size, (batch_size, seq_length))
|
68 |
+
attention_mask = torch.ones(batch_size, seq_length)
|
69 |
+
attention_mask[:, -5:] = 0 # Mask out last 5 tokens
|
70 |
+
|
71 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
72 |
+
self.assertIsNotNone(outputs)
|
73 |
+
self.assertEqual(outputs.logits.shape, (batch_size, seq_length, self.config.vocab_size))
|
74 |
+
|
75 |
+
def test_generation_with_vision(self):
|
76 |
+
# Test text generation with vision input
|
77 |
+
pixel_values = torch.randn(1, 3, 224, 224)
|
78 |
+
input_ids = torch.randint(0, self.config.vocab_size, (1, 5))
|
79 |
+
|
80 |
+
outputs = self.model.generate(
|
81 |
+
input_ids=input_ids,
|
82 |
+
pixel_values=pixel_values,
|
83 |
+
max_length=20,
|
84 |
+
num_beams=1
|
85 |
+
)
|
86 |
+
|
87 |
+
self.assertIsInstance(outputs, torch.Tensor)
|
88 |
+
self.assertEqual(outputs.dim(), 2)
|
89 |
+
self.assertTrue(outputs.size(1) <= 20)
|
90 |
+
|
91 |
+
if __name__ == '__main__':
|
92 |
+
unittest.main()
|
test_tokenization_sapnous.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import unittest
|
16 |
+
import torch
|
17 |
+
from pathlib import Path
|
18 |
+
from transformers import AutoTokenizer
|
19 |
+
from .tokenization_sapnous import SapnousTokenizer
|
20 |
+
|
21 |
+
class TestSapnousTokenizer(unittest.TestCase):
|
22 |
+
@classmethod
|
23 |
+
def setUpClass(cls):
|
24 |
+
# Create temporary vocab and merges files for testing
|
25 |
+
cls.temp_dir = Path('test_tokenizer_files')
|
26 |
+
cls.temp_dir.mkdir(exist_ok=True)
|
27 |
+
|
28 |
+
# Create a simple test vocabulary
|
29 |
+
cls.vocab_file = cls.temp_dir / 'vocab.json'
|
30 |
+
cls.vocab = {
|
31 |
+
'<|endoftext|>': 0,
|
32 |
+
'<|startoftext|>': 1,
|
33 |
+
'<|pad|>': 2,
|
34 |
+
'<|vision_start|>': 3,
|
35 |
+
'<|vision_end|>': 4,
|
36 |
+
'<|image|>': 5,
|
37 |
+
'<|video|>': 6,
|
38 |
+
'hello': 7,
|
39 |
+
'world': 8,
|
40 |
+
'test': 9,
|
41 |
+
}
|
42 |
+
with cls.vocab_file.open('w', encoding='utf-8') as f:
|
43 |
+
import json
|
44 |
+
json.dump(cls.vocab, f)
|
45 |
+
|
46 |
+
# Create test merges file
|
47 |
+
cls.merges_file = cls.temp_dir / 'merges.txt'
|
48 |
+
merges_content = "#version: 0.2\nh e\ne l\nl l\no w\nw o\no r\nr l\nl d"
|
49 |
+
cls.merges_file.write_text(merges_content)
|
50 |
+
|
51 |
+
# Initialize tokenizer
|
52 |
+
cls.tokenizer = SapnousTokenizer(
|
53 |
+
str(cls.vocab_file),
|
54 |
+
str(cls.merges_file),
|
55 |
+
)
|
56 |
+
|
57 |
+
@classmethod
|
58 |
+
def tearDownClass(cls):
|
59 |
+
# Clean up temporary files
|
60 |
+
import shutil
|
61 |
+
shutil.rmtree(cls.temp_dir)
|
62 |
+
|
63 |
+
def test_tokenizer_initialization(self):
|
64 |
+
self.assertEqual(self.tokenizer.vocab_size, len(self.vocab))
|
65 |
+
self.assertEqual(self.tokenizer.get_vocab(), self.vocab)
|
66 |
+
|
67 |
+
# Test special tokens
|
68 |
+
self.assertEqual(self.tokenizer.unk_token, '<|endoftext|>')
|
69 |
+
self.assertEqual(self.tokenizer.bos_token, '<|startoftext|>')
|
70 |
+
self.assertEqual(self.tokenizer.eos_token, '<|endoftext|>')
|
71 |
+
self.assertEqual(self.tokenizer.pad_token, '<|pad|>')
|
72 |
+
|
73 |
+
def test_tokenization(self):
|
74 |
+
text = "hello world test"
|
75 |
+
tokens = self.tokenizer.tokenize(text)
|
76 |
+
self.assertIsInstance(tokens, list)
|
77 |
+
self.assertTrue(all(isinstance(token, str) for token in tokens))
|
78 |
+
|
79 |
+
# Test encoding
|
80 |
+
input_ids = self.tokenizer.encode(text, add_special_tokens=False)
|
81 |
+
self.assertIsInstance(input_ids, list)
|
82 |
+
self.assertEqual(len(input_ids), 3) # 'hello', 'world', 'test'
|
83 |
+
|
84 |
+
# Test decoding
|
85 |
+
decoded_text = self.tokenizer.decode(input_ids)
|
86 |
+
self.assertEqual(decoded_text.strip(), text)
|
87 |
+
|
88 |
+
def test_special_tokens_handling(self):
|
89 |
+
text = "hello world"
|
90 |
+
# Test with special tokens
|
91 |
+
tokens_with_special = self.tokenizer.encode(text, add_special_tokens=True)
|
92 |
+
self.assertTrue(tokens_with_special[0] == self.tokenizer.bos_token_id)
|
93 |
+
self.assertTrue(tokens_with_special[-1] == self.tokenizer.eos_token_id)
|
94 |
+
|
95 |
+
# Test without special tokens
|
96 |
+
tokens_without_special = self.tokenizer.encode(text, add_special_tokens=False)
|
97 |
+
self.assertNotEqual(tokens_without_special[0], self.tokenizer.bos_token_id)
|
98 |
+
self.assertNotEqual(tokens_without_special[-1], self.tokenizer.eos_token_id)
|
99 |
+
|
100 |
+
def test_vision_tokens(self):
|
101 |
+
# Test vision-specific token methods
|
102 |
+
text = "This is an image description"
|
103 |
+
vision_text = self.tokenizer.prepare_for_vision(text)
|
104 |
+
self.assertTrue(vision_text.startswith('<|vision_start|>'))
|
105 |
+
self.assertTrue(vision_text.endswith('<|vision_end|>'))
|
106 |
+
|
107 |
+
image_text = self.tokenizer.prepare_for_image(text)
|
108 |
+
self.assertTrue(image_text.startswith('<|image|>'))
|
109 |
+
|
110 |
+
video_text = self.tokenizer.prepare_for_video(text)
|
111 |
+
self.assertTrue(video_text.startswith('<|video|>'))
|
112 |
+
|
113 |
+
def test_batch_encoding(self):
|
114 |
+
texts = ["hello world", "test hello"]
|
115 |
+
batch_encoding = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
116 |
+
|
117 |
+
self.assertIsInstance(batch_encoding["input_ids"], torch.Tensor)
|
118 |
+
self.assertIsInstance(batch_encoding["attention_mask"], torch.Tensor)
|
119 |
+
self.assertEqual(batch_encoding["input_ids"].shape[0], len(texts))
|
120 |
+
self.assertEqual(batch_encoding["attention_mask"].shape[0], len(texts))
|
121 |
+
|
122 |
+
def test_save_and_load(self):
|
123 |
+
# Test saving vocabulary
|
124 |
+
save_dir = Path('test_save_tokenizer')
|
125 |
+
save_dir.mkdir(exist_ok=True)
|
126 |
+
|
127 |
+
try:
|
128 |
+
vocab_files = self.tokenizer.save_vocabulary(str(save_dir))
|
129 |
+
self.assertTrue(all(Path(f).exists() for f in vocab_files))
|
130 |
+
|
131 |
+
# Test loading saved vocabulary
|
132 |
+
loaded_tokenizer = SapnousTokenizer(*vocab_files)
|
133 |
+
self.assertEqual(loaded_tokenizer.get_vocab(), self.tokenizer.get_vocab())
|
134 |
+
|
135 |
+
# Test encoding/decoding with loaded tokenizer
|
136 |
+
text = "hello world test"
|
137 |
+
original_encoding = self.tokenizer.encode(text)
|
138 |
+
loaded_encoding = loaded_tokenizer.encode(text)
|
139 |
+
self.assertEqual(original_encoding, loaded_encoding)
|
140 |
+
finally:
|
141 |
+
# Clean up
|
142 |
+
import shutil
|
143 |
+
shutil.rmtree(save_dir)
|
144 |
+
|
145 |
+
def test_auto_tokenizer_registration(self):
|
146 |
+
# Test if the tokenizer can be loaded using AutoTokenizer
|
147 |
+
config = {
|
148 |
+
"model_type": "sapnous",
|
149 |
+
"vocab_file": str(self.vocab_file),
|
150 |
+
"merges_file": str(self.merges_file)
|
151 |
+
}
|
152 |
+
|
153 |
+
tokenizer = AutoTokenizer.from_pretrained(str(self.temp_dir), **config)
|
154 |
+
self.assertIsInstance(tokenizer, SapnousTokenizer)
|
155 |
+
|
156 |
+
if __name__ == '__main__':
|
157 |
+
unittest.main()
|
tokenization_sapnous.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from typing import List, Optional, Tuple, Union
|
16 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
17 |
+
from transformers import AutoTokenizer
|
18 |
+
import json
|
19 |
+
import regex as re
|
20 |
+
from pathlib import Path
|
21 |
+
from typing import Dict, List, Optional, Union
|
22 |
+
|
23 |
+
BYTES_TO_UNICODE_REGEX = re.compile(r"'([^']+)':\s*([0-9]+)")
|
24 |
+
|
25 |
+
def bytes_to_unicode():
|
26 |
+
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
27 |
+
cs = bs[:]
|
28 |
+
n = 0
|
29 |
+
for b in range(2**8):
|
30 |
+
if b not in bs:
|
31 |
+
bs.append(b)
|
32 |
+
cs.append(2**8 + n)
|
33 |
+
n += 1
|
34 |
+
cs = [chr(n) for n in cs]
|
35 |
+
return dict(zip(bs, cs))
|
36 |
+
|
37 |
+
def get_pairs(word):
|
38 |
+
pairs = set()
|
39 |
+
prev_char = word[0]
|
40 |
+
for char in word[1:]:
|
41 |
+
pairs.add((prev_char, char))
|
42 |
+
prev_char = char
|
43 |
+
return pairs
|
44 |
+
|
45 |
+
class SapnousTokenizer(PreTrainedTokenizer):
|
46 |
+
model_input_names = ["input_ids", "attention_mask"]
|
47 |
+
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
vocab_file: str,
|
51 |
+
merges_file: Optional[str] = None,
|
52 |
+
unk_token: str = "<|endoftext|>",
|
53 |
+
bos_token: str = "<|startoftext|>",
|
54 |
+
eos_token: str = "<|endoftext|>",
|
55 |
+
pad_token: str = "<|pad|>",
|
56 |
+
vision_start_token: str = "<|vision_start|>",
|
57 |
+
vision_end_token: str = "<|vision_end|>",
|
58 |
+
image_token: str = "<|image|>",
|
59 |
+
video_token: str = "<|video|>",
|
60 |
+
add_prefix_space: bool = False,
|
61 |
+
**kwargs
|
62 |
+
):
|
63 |
+
super().__init__(
|
64 |
+
unk_token=unk_token,
|
65 |
+
bos_token=bos_token,
|
66 |
+
eos_token=eos_token,
|
67 |
+
pad_token=pad_token,
|
68 |
+
**kwargs,
|
69 |
+
)
|
70 |
+
|
71 |
+
self.vocab_file = vocab_file
|
72 |
+
self.merges_file = merges_file
|
73 |
+
self.add_prefix_space = add_prefix_space
|
74 |
+
|
75 |
+
self.special_tokens = {
|
76 |
+
"unk_token": unk_token,
|
77 |
+
"bos_token": bos_token,
|
78 |
+
"eos_token": eos_token,
|
79 |
+
"pad_token": pad_token,
|
80 |
+
"vision_start_token": vision_start_token,
|
81 |
+
"vision_end_token": vision_end_token,
|
82 |
+
"image_token": image_token,
|
83 |
+
"video_token": video_token,
|
84 |
+
}
|
85 |
+
|
86 |
+
with Path(vocab_file).open(encoding="utf-8") as f:
|
87 |
+
self.encoder = json.load(f)
|
88 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
89 |
+
|
90 |
+
if merges_file:
|
91 |
+
with Path(merges_file).open(encoding="utf-8") as f:
|
92 |
+
bpe_merges = f.read().strip().split('\n')[1:]
|
93 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
94 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
95 |
+
else:
|
96 |
+
self.bpe_ranks = {}
|
97 |
+
|
98 |
+
self.byte_encoder = bytes_to_unicode()
|
99 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
100 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\w+| ?\d+| ?[^\s\w\d]+|\s+(?!\S)|\s+""")
|
101 |
+
|
102 |
+
def bpe(self, token: str) -> str:
|
103 |
+
if token in self.special_tokens.values():
|
104 |
+
return token
|
105 |
+
|
106 |
+
word = tuple(token)
|
107 |
+
pairs = get_pairs(word)
|
108 |
+
|
109 |
+
if not pairs:
|
110 |
+
return token
|
111 |
+
|
112 |
+
while True:
|
113 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
114 |
+
if bigram not in self.bpe_ranks:
|
115 |
+
break
|
116 |
+
first, second = bigram
|
117 |
+
new_word = []
|
118 |
+
i = 0
|
119 |
+
while i < len(word):
|
120 |
+
try:
|
121 |
+
j = word.index(first, i)
|
122 |
+
new_word.extend(word[i:j])
|
123 |
+
if word[j + 1] == second:
|
124 |
+
new_word.append(first + second)
|
125 |
+
i = j + 2
|
126 |
+
else:
|
127 |
+
new_word.append(word[j])
|
128 |
+
i = j + 1
|
129 |
+
except ValueError:
|
130 |
+
new_word.extend(word[i:])
|
131 |
+
break
|
132 |
+
word = tuple(new_word)
|
133 |
+
if len(word) == 1:
|
134 |
+
break
|
135 |
+
pairs = get_pairs(word)
|
136 |
+
return ' '.join(word)
|
137 |
+
|
138 |
+
def _tokenize(self, text: str) -> List[str]:
|
139 |
+
if self.add_prefix_space:
|
140 |
+
text = ' ' + text
|
141 |
+
|
142 |
+
bpe_tokens = []
|
143 |
+
for token in re.findall(self.pat, text):
|
144 |
+
token = ''.join(self.byte_encoder[ord(b)] for b in token)
|
145 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' '))
|
146 |
+
return bpe_tokens
|
147 |
+
|
148 |
+
def _convert_token_to_id(self, token: str) -> int:
|
149 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
150 |
+
|
151 |
+
def _convert_id_to_token(self, index: int) -> str:
|
152 |
+
return self.decoder.get(index, self.unk_token)
|
153 |
+
|
154 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
155 |
+
text = ''.join(tokens)
|
156 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors='replace')
|
157 |
+
return text
|
158 |
+
|
159 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str, str]:
|
160 |
+
if not filename_prefix:
|
161 |
+
filename_prefix = ""
|
162 |
+
|
163 |
+
vocab_file = Path(save_directory) / f"{filename_prefix}vocab.json"
|
164 |
+
merge_file = Path(save_directory) / f"{filename_prefix}merges.txt"
|
165 |
+
|
166 |
+
with vocab_file.open('w', encoding='utf-8') as f:
|
167 |
+
json.dump(self.encoder, f, ensure_ascii=False)
|
168 |
+
|
169 |
+
if self.merges_file:
|
170 |
+
with merge_file.open('w', encoding='utf-8') as f:
|
171 |
+
for merge in self.bpe_ranks:
|
172 |
+
f.write(f"{merge[0]} {merge[1]}\n")
|
173 |
+
return str(vocab_file), str(merge_file)
|
174 |
+
|
175 |
+
return str(vocab_file)
|
176 |
+
|
177 |
+
def prepare_for_vision(self, text: str) -> str:
|
178 |
+
"""Prepare text for vision tasks by adding special tokens."""
|
179 |
+
return f"{self.vision_start_token}{text}{self.vision_end_token}"
|
180 |
+
|
181 |
+
def prepare_for_image(self, text: str) -> str:
|
182 |
+
"""Prepare text for image tasks."""
|
183 |
+
return f"{self.image_token}{text}"
|
184 |
+
|
185 |
+
def prepare_for_video(self, text: str) -> str:
|
186 |
+
"""Prepare text for video tasks."""
|
187 |
+
return f"{self.video_token}{text}"
|
188 |
+
|
189 |
+
@property
|
190 |
+
def vocab_size(self) -> int:
|
191 |
+
return len(self.encoder)
|
192 |
+
|
193 |
+
def get_vocab(self) -> Dict[str, int]:
|
194 |
+
return self.encoder.copy()
|
195 |
+
|
196 |
+
# Register the tokenizer
|
197 |
+
AutoTokenizer.register(SapnousTokenizer, "sapnous")
|