# coding=utf-8 # Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch import json from pathlib import Path from transformers import AutoModelForCausalLM, AutoTokenizer from ctransformers import AutoModelForCausalLM as GGUFModel from models.sapnous import SapnousT1Config def convert_to_gguf(model_path, output_path): # Load the model and tokenizer with vision-language support model = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True, device_map='auto', torch_dtype=torch.float16 # Use FP16 for memory efficiency ) tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code=True ) # Get model configuration config = model.config if not isinstance(config, SapnousT1Config): raise ValueError("Model must be a SapnousT1 model") # Save in intermediate format model.save_pretrained(output_path, safe_serialization=True) tokenizer.save_pretrained(output_path) # Convert to GGUF using custom SapnousT1 architecture settings gguf_model = GGUFModel.from_pretrained( output_path, model_type='sapnous_t1', # Custom architecture type gpu_layers=0, # CPU only for conversion config={ 'context_length': config.sliding_window, 'attention_type': 'multihead', # Custom attention implementation 'num_attention_heads': config.num_attention_heads, 'num_key_value_heads': config.num_key_value_heads, 'hidden_size': config.hidden_size, 'intermediate_size': config.intermediate_size, 'max_position_embeddings': config.max_position_embeddings, 'vocab_size': config.vocab_size, 'num_hidden_layers': config.num_hidden_layers, 'rms_norm_eps': config.rms_norm_eps, 'rope_theta': config.rope_theta, # Vision model parameters 'vision_config': { 'hidden_size': config.vision_hidden_size, 'num_hidden_layers': config.vision_layers, 'num_attention_heads': config.vision_heads, 'intermediate_size': config.vision_intermediate_size, 'patch_size': config.patch_size, 'image_size': config.image_size } } ) print(f"Model converted and saved to {output_path}") return gguf_model def convert_to_hf(gguf_path, output_path): """Convert GGUF model back to Hugging Face format""" # Load GGUF model configuration config_path = Path(gguf_path) / "config.json" with open(config_path, 'r') as f: gguf_config = json.load(f) # Create SapnousT1 configuration config = SapnousT1Config( vocab_size=gguf_config['vocab_size'], hidden_size=gguf_config['hidden_size'], num_hidden_layers=gguf_config['num_hidden_layers'], num_attention_heads=gguf_config['num_attention_heads'], num_key_value_heads=gguf_config['num_key_value_heads'], intermediate_size=gguf_config['intermediate_size'], max_position_embeddings=gguf_config['max_position_embeddings'], rms_norm_eps=gguf_config['rms_norm_eps'], rope_theta=gguf_config['rope_theta'], # Vision configuration vision_hidden_size=gguf_config['vision_config']['hidden_size'], vision_layers=gguf_config['vision_config']['num_hidden_layers'], vision_heads=gguf_config['vision_config']['num_attention_heads'], vision_intermediate_size=gguf_config['vision_config']['intermediate_size'], patch_size=gguf_config['vision_config']['patch_size'], image_size=gguf_config['vision_config']['image_size'] ) # Load GGUF model gguf_model = GGUFModel.from_pretrained(gguf_path) # Convert weights to HF format model = AutoModelForCausalLM.from_config(config) model.load_state_dict(gguf_model.state_dict()) # Save converted model model.save_pretrained(output_path) print(f"Model converted back to Hugging Face format at {output_path}") return model if __name__ == '__main__': model_path = os.path.dirname(os.path.abspath(__file__)) output_path = os.path.join(model_path, 'gguf_model') if not os.path.exists(output_path): os.makedirs(output_path) convert_to_gguf(model_path, output_path)