# coding=utf-8 # Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import PreTrainedModel, AutoConfig import torch import torch.nn as nn class SapnousT1ForCausalLM(PreTrainedModel): config_class = AutoConfig def __init__(self, config): super().__init__(config) self.hidden_size = config.hidden_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList([ nn.Linear(config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers) ]) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) def forward(self, input_ids): hidden_states = self.embed_tokens(input_ids) for layer in self.layers: hidden_states = layer(hidden_states) logits = self.lm_head(hidden_states) return logits # Register model with transformers from transformers import AutoModelForCausalLM AutoModelForCausalLM.register(SapnousT1ForCausalLM, "sapnous_t1")