Text Generation
Transformers
Safetensors
qwen2
conversational
text-generation-inference
Inference Endpoints
maohaos2 commited on
Commit
5c1d9f3
·
verified ·
1 Parent(s): dc5bf2a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -4
README.md CHANGED
@@ -49,7 +49,6 @@ Through format tuning, the LLM has adopted the COAT reasoning style but struggle
49
  import os
50
  from tqdm import tqdm
51
  import torch
52
- from transformers import AutoTokenizer
53
  from vllm import LLM, SamplingParams
54
 
55
  def generate(question_list,model_path):
@@ -68,7 +67,7 @@ def generate(question_list,model_path):
68
  completions = [[output.text for output in output_item.outputs] for output_item in outputs]
69
  return completions
70
 
71
- def prepare_prompt(question, tokenizer):
72
  prompt = f"<|im_start|>user\nSolve the following math problem efficiently and clearly.\nPlease reason step by step, and put your final answer within \\boxed{{}}.\nProblem: {question}<|im_end|>\n<|im_start|>assistant\n"
73
  return prompt
74
 
@@ -77,9 +76,8 @@ def run():
77
  all_problems = [
78
  "which number is larger? 9.11 or 9.9?",
79
  ]
80
- tokenizer = AutoTokenizer.from_pretrained(model_path)
81
  completions = generate(
82
- [prepare_prompt(problem_data, tokenizer) for problem_data in all_problems],
83
  model_path
84
  )
85
 
 
49
  import os
50
  from tqdm import tqdm
51
  import torch
 
52
  from vllm import LLM, SamplingParams
53
 
54
  def generate(question_list,model_path):
 
67
  completions = [[output.text for output in output_item.outputs] for output_item in outputs]
68
  return completions
69
 
70
+ def prepare_prompt(question):
71
  prompt = f"<|im_start|>user\nSolve the following math problem efficiently and clearly.\nPlease reason step by step, and put your final answer within \\boxed{{}}.\nProblem: {question}<|im_end|>\n<|im_start|>assistant\n"
72
  return prompt
73
 
 
76
  all_problems = [
77
  "which number is larger? 9.11 or 9.9?",
78
  ]
 
79
  completions = generate(
80
+ [prepare_prompt(problem_data) for problem_data in all_problems],
81
  model_path
82
  )
83