--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: NLLB-600m-swh_Latn-to-eng_Latn results: [] --- # NLLB-600m-swh_Latn-to-eng_Latn This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2490 - Bleu: 31.1907 - Gen Len: 34.464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 7 - total_train_batch_size: 14 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 2.8224 | 0.41 | 500 | 2.3121 | 8.4908 | 34.136 | | 2.1656 | 0.83 | 1000 | 1.9451 | 14.9983 | 33.604 | | 1.885 | 1.24 | 1500 | 1.7385 | 18.7049 | 33.928 | | 1.6922 | 1.66 | 2000 | 1.6102 | 21.7399 | 33.648 | | 1.5693 | 2.07 | 2500 | 1.5175 | 23.2299 | 34.912 | | 1.4695 | 2.49 | 3000 | 1.4552 | 24.8572 | 32.612 | | 1.4195 | 2.9 | 3500 | 1.3948 | 26.3956 | 33.56 | | 1.3413 | 3.32 | 4000 | 1.3564 | 27.2599 | 32.824 | | 1.3094 | 3.73 | 4500 | 1.3263 | 27.9728 | 33.42 | | 1.2748 | 4.15 | 5000 | 1.3044 | 28.8956 | 33.56 | | 1.227 | 4.56 | 5500 | 1.2844 | 29.8314 | 33.552 | | 1.2255 | 4.97 | 6000 | 1.2692 | 30.4411 | 33.716 | | 1.191 | 5.39 | 6500 | 1.2611 | 31.1336 | 34.432 | | 1.1842 | 5.8 | 7000 | 1.2542 | 30.8819 | 33.716 | | 1.1712 | 6.22 | 7500 | 1.2506 | 31.528 | 33.768 | | 1.1606 | 6.63 | 8000 | 1.2490 | 31.1907 | 34.464 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1