fix example
Browse files
README.md
CHANGED
@@ -76,8 +76,7 @@ Clinical Mosaic was pre-trained on deidentified clinical notes from MIMIC-IV-NOT
|
|
76 |
Install the Hugging Face Transformers library and load the model as follows:
|
77 |
|
78 |
```python
|
79 |
-
from transformers import
|
80 |
-
import torch
|
81 |
|
82 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # MosaicBERT uses the standard BERT tokenizer
|
83 |
config = BertConfig.from_pretrained('Sifal/ClinicalMosaic') # the config needs to be passed in
|
@@ -86,14 +85,19 @@ config = BertConfig.from_pretrained('Sifal/ClinicalMosaic') # the config needs t
|
|
86 |
config.num_labels = 4
|
87 |
config.hidden_size = 768
|
88 |
|
89 |
-
ClassifierClincalMosaic = AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
# Example usage
|
92 |
-
|
93 |
clinical_text = "..."
|
94 |
|
95 |
inputs = tokenizer(clinical_text, return_tensors="pt")
|
96 |
-
|
97 |
```
|
98 |
|
99 |
Further instructions and example scripts are provided in the model’s repository.
|
|
|
76 |
Install the Hugging Face Transformers library and load the model as follows:
|
77 |
|
78 |
```python
|
79 |
+
from transformers import AutoModelForSequenceClassification, BertTokenizer, BertConfig
|
|
|
80 |
|
81 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # MosaicBERT uses the standard BERT tokenizer
|
82 |
config = BertConfig.from_pretrained('Sifal/ClinicalMosaic') # the config needs to be passed in
|
|
|
85 |
config.num_labels = 4
|
86 |
config.hidden_size = 768
|
87 |
|
88 |
+
ClassifierClincalMosaic = AutoModelForSequenceClassification.from_pretrained(
|
89 |
+
'Sifal/ClinicalMosaic',
|
90 |
+
config=config,
|
91 |
+
torch_dtype='auto',
|
92 |
+
trust_remote_code=True,
|
93 |
+
device_map="auto"
|
94 |
+
)
|
95 |
|
96 |
# Example usage
|
|
|
97 |
clinical_text = "..."
|
98 |
|
99 |
inputs = tokenizer(clinical_text, return_tensors="pt")
|
100 |
+
logits = ClassifierClincalMosaic(**inputs).logits
|
101 |
```
|
102 |
|
103 |
Further instructions and example scripts are provided in the model’s repository.
|